Abstract:
The present invention relates to therapeutic conjugates with improved ability to target various diseased cells containing a targeting moiety (such as an antibody or antibody fragment), a linker and a therapeutic moiety, and further relates to processes for making and using the conjugates.
Abstract:
An anti-HIV-1 spike composition includes a first anti-HIV-1 antibody Fab and a second anti-HIV-1 antibody Fab linked by a DNA or protein linker molecule to form a crosslinked homo-diFab or hetero-diFab having improved viral potency and neutralization. The anti-HIV-1 antibody Fabs include anti-gp120 CD4, anti-gp120 V1V2, anti-gp120 V3, and anti-gp41.
Abstract:
Disclosed herein are isolated immunogens including variant gp120 polypeptides. In an example, a variant gp120 polypeptide includes a deletion of at least 8 consecutive residues of the fourth conserved loop (C4) between residues 419 and 434 of gp120 according to HXB2 numbering. Also provided are isolated nucleic acid molecules encoding the disclosed isolated immunogens. In an example, an isolated nucleic acid molecule further includes a nucleic acid molecule encoding a hepatitis B surface antigen or a variant thereof. Compositions including the isolated immunogens including variant gp120 polypeptides are also disclosed. In some examples, a composition further includes a carrier protein, such as a hepatitis B surface antigen or a variant thereof (natural or recombinant). Viral-like particles are also provided including any of the disclosed isolated immunogens or compositions. Also disclosed are uses of these variant gp120 polypeptides and nucleic acids encoding variant polypeptides, such as to induce an immune response to HIV-1.
Abstract:
The present invention relates to an immunogenic composition comprising an antigenic peptide of formula (I) below: Nt-S-X1-X2-X3-K-X4-Ct (I) [SEQ ID No 1], wherein —Nt consists of a peptide having from 0 to 50 amino acids in length, —Ct consists of a peptide having from 0 to 50 amino acids in length, —each of X1 to X4 consists of an amino acid residue, wherein: —(i) X1 means the specific amino acid W or (ii) X1 means any amino acid residue excepted W, —(i) X2 means the specific amino acid S or (ii) X2 means any amino acid residue excepted S, —(i) X3 means the specific amino acid N or (ii) X3 means any amino acid residue excepted N, —(i) X4 means the specific amino acid S or (ii) X4 means any amino acid residue excepted S, with the proviso that —three out of the four amino acid residues X1, X2, X3 and X4 mean the specific amino acid defined in their respective meaning (i) above, and —the remaining amino acid residue among X1 to X4 means any amino acid residue excepted the specific amino acid residue defined in its meaning (i), for preventing and/or treating an infection of an individual with an HIV-1 virus.
Abstract:
Monoclonal neutralizing antibodies are disclosed that specifically bind to the CD4 binding site of HIV-1 gp120. Monoclonal neutralizing antibodies also are disclosed that specifically bind to HIV-1 gp41. The identification of these antibodies, and the use of these antibodies are also disclosed. Methods are also provided for enhancing the binding and neutralizing activity of any antibody using epitope scaffold probes.
Abstract:
The present invention relates to an exceptionally broad and potent neutralizing antibody which may comprise cross-clade neutralizing coverage of 83% at a median IC50 of 0.003 μg/ml, compositions containing the same and uses thereof.
Abstract:
A method of detecting a pathogen in a sample. The pathogen from the sample is captured with at least one recognition element. The sample is introduced to a paper-based microfluidic device having spaced electrodes disposed thereon. An impedance magnitude of the sample is measured across the spaced electrodes to detect a presence of the pathogen in the sample. A related paper-based microfluidic device and system are also disclosed.
Abstract:
Disclosed herein is a composition including a recombinant nucleic acid sequence that encodes an antibody. Also disclosed herein is a method of generating a synthetic antibody in a subject by administering the composition to the subject. The disclosure also provides a method of preventing and/or treating disease in a subject using said composition and method of generation.
Abstract:
The present invention relates to an in vitro method for determining HIV neutralizing antibodies in a sample. It further relates to a fusion protein to be used in said method and a nucleic acid encoding said fusion protein.