Abstract:
A sense amplifier is disclosed that includes an amplifier circuit configured to receive, at an input, an input signal including an input level, the amplifier circuit configured to provide an amplified output signal including a gain with respect to the input level; and a feedback circuit coupled to receive the amplified output signal from the amplifier circuit, the feedback circuit configured to provide, at the input of the amplifier circuit, an adjusted version of the amplified output signal including a modified output magnitude based on common mode feedback.
Abstract:
Disclosed are various apparatuses and methods for a memory with a multiple word line design. A memory timing circuit may include a dummy word line including a first portion and a second portion and further including capacitative loading that is lumped in the second portion of the dummy word line, a first transistor connected to the first portion of the dummy word line and configured to charge the dummy word line, and a second transistor connected to the second portion of the dummy word line and configured to discharge the dummy word line. A method may include charging a dummy word line using a first transistor, and discharging the dummy word line using a second transistor, wherein the dummy word line includes a first portion and a second portion and further includes capacitative loading that is lumped in the second portion of the dummy word line.
Abstract:
A memory circuit is provided comprising a plurality of bit cells coupled to a bit line that permits accessing information from each of the plurality of bit cells. A sense inverter is coupled to an output of the bit line. A keeper circuit has an output coupled to the bit line to compensate for current leakage from the plurality of bit cells. The keeper circuit may comprise an n-channel metal-oxide-silicon (NMOS) transistor in series with a p-channel metal-oxide-silicon (PMOS) transistor.
Abstract:
A static, ternary content addressable memory (TCAM) includes a key cell and a mask cell coupled to intermediate match lines. The key cell is coupled to a first pull-down transistor and a first pull-up transistor. The mask cell is coupled to a second pull-down transistor and a second pull-up transistor. The first pull-down transistor and second pull-down transistor are connected in parallel and the first pull-up transistor and second pull-up transistor are connected in series. A match line output is also coupled to the first pull-down transistor and second pull-down transistor and further coupled to the first pull-up transistor and second pull-up transistor.
Abstract:
A multiport bitcell including a pair of cross-coupled inverters is provided with increased write speed and enhanced operating voltage range by the selective isolation of a first one of the cross-coupled inverters from a power supply and ground during a write operation. The write operation occurs through a write port that includes a transmission gate configured to couple a first node driven by the first cross-coupled inverter to a write bit line. A remaining second cross-coupled inverter in the bitcell is configured to drive a second node that couples to a plurality of read ports.
Abstract:
A dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit biases the switched n-well to prevent voltage damage to the dual-mode PMOS transistor despite its relatively small size and thin gate-oxide thickness.
Abstract:
A semiconductor apparatus is provided herein for reducing power when transmitting data between a first device and a second device in the semiconductor apparatus. Additional circuitry is added to the semiconductor apparatus to create a communication system that decreases a number of state changes for each signal line of a data bus between the first device and the second device for all communications. The additional circuitry includes a decoder coupled to receive and convert a value from the first device for transmission over the data bus to an encoder that provides a recovered (i.e., re-encoded) version of the value to the second device. One or more multiplexers may also be included in the additional circuitry to support any number of devices.
Abstract:
The disclosure relates to an apparatus for deactivating one or more predecoded address lines of a memory circuit in response to one or more of the predecoded address lines being activated upon powering on of at least a portion of the apparatus. In particular, the apparatus includes a memory device; an address predecoder configured to activate one or more of a plurality of predecoded address lines based on an input address, wherein the plurality of predecoded address lines are coupled to the memory device for accessing one or more memory cells associated with the one or more activated predecoded address lines; and a power-on-reset circuit configured to deactivate one or more of the predecoded address lines in response to the one or more of the predecoded address lines being activated upon powering on the at least portion of the apparatus.
Abstract:
A dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit biases the switched n-well to prevent voltage damage to the dual-mode PMOS transistor despite its relatively small size and thin gate-oxide thickness.
Abstract:
A method includes: reading a plurality of words from a one-time program (OTP) memory of a processing chip, wherein each of the words includes secure data for the chip and bits corresponding to a check pattern; comparing the bits corresponding to the check pattern to a preprogrammed check pattern; detecting an error based on comparing the bits corresponding to the check pattern to the preprogrammed check pattern; and performing an action by the processing chip in response to detecting the error.