Abstract:
A communication device receives a trigger frame that is configured to: trigger a contention-based uplink orthogonal frequency multiple access (OFDMA) transmission by multiple communication devices, and indicate a predetermined length of the contention-based uplink OFDMA transmission, wherein the predetermined length corresponds to contention-based uplink OFDMA transmissions. Responsive to receiving the trigger frame, the communication device generates a data unit having the predetermined length, and responsive to receiving the trigger frame, transmits the data unit as part of a contention-based uplink OFDMA transmission.
Abstract:
Systems, apparatuses and methods described herein provide a method for padding a signal extension of orthogonal frequency-division multiplexing (OFDM) symbols. A transceiver may obtain. a plurality of data symbols for transmission, and determine that a number of information bits for a last symbol of the plurality of data symbols is not an integer value. A special padding rule may be applied to add padding bits to the last symbol. A number of coded bits for the last symbol may be determined when the number of information bits for the last symbol has changed, and the plurality of data symbols for data transmission may be encoded based on the determined number of coded bits for the last symbol.
Abstract:
A method for transmitting an 802.11ah packet is provided. A training field sequence is generated using control circuitry. A preamble for a packet is generated using the control circuitry. The preamble includes a training field symbol which includes the training field sequence. A portion of the training field sequence is within a plurality of guard tones of the training field symbol. The preamble is transmitted using transmit circuitry.
Abstract:
A method for generating OFDM signals is implemented in a device operating according to a communication protocol. The protocol defines non-duplicate mode data units corresponding to single component channels of a BSS channel, and non-duplicate mode data units corresponding to sets of adjacent component channels. Non-duplicate mode data units corresponding to a set of component channels have more lower-edge and/or upper-edge guard tones than non-duplicate mode data units corresponding to single component channels. The method includes determining that a duplicate mode will be utilized for an OFDM transmission in the set of component channels and, in response, generating a duplicate mode data unit. The duplicate mode data unit has fewer lower-edge and/or upper-edge guard tones than a non-duplicate mode data unit corresponding to a set of component channels, and includes one duplicate of the non-duplicate mode data unit corresponding to the single component channel for each adjacent component channel.
Abstract:
A field of a preamble of the data unit is decoded using a tail biting technique, including decoding a received cyclic redundancy check (CRC) included in the field. A first CRC for the field is generated using a first CRC generation scheme, and a second CRC for the field is generated using a second CRC generation scheme. The first generated CRC and the second generated CRC are compared to the received CRC. It is determined that the data unit conforms to a first communication protocol when the first generated CRC matches the received CRC, and it is determined that the data unit conforms to a second communication protocol when the second generated CRC matches the received CRC.
Abstract:
Systems, apparatuses, and techniques for interference avoidance beamforming transmissions are described. A described apparatus can be configured to control a first channel sounding process with the first device to obtain first channel feedback regarding a wireless channel between the apparatus and the first device, determine, responsive to the first channel feedback, a first matrix to improve a performance of the beamforming transmission with respect to the first device, control a second channel sounding process with a second device to obtain second channel feedback regarding a wireless channel between the apparatus and the second device, determine, responsive to the second channel feedback, a second matrix to reduce interference leakage received by the second device during the beamforming transmission, and control the beamforming transmission to the first device based on the data and a steering matrix, the steering matrix being based on the first matrix and the second matrix.
Abstract:
Systems, apparatuses, and techniques relating to wireless local area network devices are described. A described technique includes transmitting a sounding packet to wireless communication devices; receiving, in response to the sounding packet, feedback packets from the wireless communication devices, wherein the feedback packets collectively comprise beamforming feedback, the beamforming feedback being derived from received versions of the sounding packet; determining a steering matrix based on the beamforming feedback; and transmitting, within a frame, spatially steered data packets to the wireless communications devices. The spatially steered data packets can be based on the steering matrix and data streams intended respectively for the wireless communication devices. The spatially steered data packets can concurrently provide the data streams respectively within the frame to the wireless communication devices via different spatial wireless channels.
Abstract:
A system and method of extracting data from data packets transmitted over a wireless network includes receiving a data packet having a preamble portion and a payload portion. The preamble portion is cross correlated with a first known spreading sequence to generate a first timing signal and the preamble portion is cross correlated with a second known spreading signal to generate a frame timing signal. An impulse is detected in the first timing signal and a first timing parameter is set based upon the detected impulse in the first timing signal. An impulse is detected in the frame timing signal and a frame timing parameter is set based upon the detected impulse in the frame timing signal. Data is extracted from the received payload portion according to the first timing parameter and the frame timing parameter.
Abstract:
Systems, methods, and other embodiments associated with a single stream wireless communication with a greenfield preamble that uses a short guard interval are described. According to one embodiment, a wireless communication device includes a transmitter configured to generate an orthogonal frequency-division multiplexing (OFDM) signal that comprises (i) a preamble and (ii) a data segment. The data segment follows the preamble. The data segment includes a plurality of data symbols that are each respectively preceded by a corresponding guard interval. A first guard interval preceding a first data symbol in the data segment has a first duration of time and each of the corresponding guard intervals that precede the remaining data symbols subsequent to the first data symbol in the data segment have a second duration of time. The second duration of time is shorter than the first duration of time.
Abstract:
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are received. A number of padding bits are added to the information bits. The number of padding bits is determined based on respective virtual values of each of one or more encoding parameters. The information bits are parsed to a number of encoders and are encoded, using the number of encoders, to generate coded bits. The coded bits are padded such that padded coded bits correspond to respective true values of each of the one or more encoding parameters. The PHY data unit is generated to include the padded coded bits.