Abstract:
A first communication device transmits a plurality of training signals to a second communication device via a communication channel. The first communication device receives feedback generated at the second communication device based on the plurality of training signals. The feedback includes steering matrix information for a plurality of orthogonal frequency division multiplexing (OFDM) tones and (ii) additional phase information corresponding to channel estimates obtained for the plurality of OFDM tone. The first communication device constructs, based on the steering matrix information, a plurality of steering matrices corresponding to the plurality of OFDM tones, and compensates, using the additional phase information, the plurality of steering matrices to reduce phase discontinuities between the OFDM tones. The first communication device steers, using the compensated steering matrices, at least one transmission via the communication channel to the second communication device.
Abstract:
Embodiments described herein provide a method for transmitting a wake-up radio packet to low power devices in a wireless local area network. At a wireless access point having a plurality of antennas, data for transmission to one or more lower power wireless devices are received. A wake-up radio packet, including a wake-up data frame, is configured for transmission to the one or more lower power wireless devices. A waveform for transmitting the wake-up radio packet is generated. At each of the plurality of antennas, the waveform is adjusted with spatial mapping to prevent unintentional spatial nulling of the waveform during transmission of the wake-up radio packet. The wake-up radio packet is transmitted, via the plurality of antennas, in a form of the adjusted waveform to the one or more lower power wireless devices prior to transmitting the received data to the one or more lower power wireless devices.
Abstract:
A first communication device generates a first portion and a second portion of a wakeup radio (WUR) wakeup packet. The first portion of the WUR wakeup packet corresponds to a wireless local area network (WLAN) legacy preamble, and spans a first frequency bandwidth. The second portion of the WUR wakeup packet spans a second bandwidth that is less than the first bandwidth, and is configured to cause a WUR of a second communication device to cause a WLAN network interface device of the second communication device to transition from a low power state to the active state. Generating the second portion of the WUR wakeup packet includes i) generating a sync portion having a plurality of sync symbols, and ii) generating a wakeup packet body. The first communication device transmits the WUR wakeup packet.
Abstract:
A boundary within a last orthogonal frequency division multiplexing (OFDM) symbol of a PHY data unit is determined. Pre-encoder padding bits are added to a set of information bits to generate a set of padded information bits such that the set of padded information bits, after being encoded, fill one or more OFDM symbols up to the boundary within the last OFDM symbol. The set of padded information bits are encoded to generate a set of coded bits. A PHY preamble is generated to include a subfield that indicates the boundary. The one or more OFDM symbols are generated to include (i) the set of coded information bits in the one or more OFDM symbols up to the boundary to allow a receiving device to stop decoding the one or more OFDM symbols at the boundary, and (ii) post-encoder padding bits in the last OFDM symbol following the boundary.
Abstract:
A communication device generates a first portion of a physical layer (PHY) preamble of a PHY data unit to include a first plurality of orthogonal frequency division multiplexing (OFDM) symbols. Each OFDM symbol of the first plurality of OFDM symbols is generated with a first OFDM tone spacing. The communication device generate a second portion of the PHY preamble to include a second plurality of OFDM symbols. Each OFDM symbol of the second plurality of OFDM symbols is generated with a second OFDM tone spacing that is a fraction 1/N of the first OFDM tone spacing, where N is a positive integer greater than one. The communication device generates a PHY data portion of the PHY data unit to include one or more third OFDM symbols. Each third OFDM symbol is generated with the second OFDM tone spacing.
Abstract:
Systems and techniques relating to wireless communications are described. A transmitter for a wireless local area network (WLAN) identifies a channel bonding mode out of a number of channel bonding modes. The channel bonding mode includes two or more available channels used by the transmitter for data transmission in the WLAN, and the two or more available channels indicating at least one busy channel not used by the transmitter for data transmission. The channel bonding mode is signaled to a receiver using a bandwidth field of a legacy signal field that is duplicated across respective channels used in the WLAN, the legacy signal field being in a preamble portion of a frame. The frame is transmitted to the receiver, wherein the frame includes a data portion of the frame that occupies the two or more available channels according to the channel bonding mode.
Abstract:
In a method for generating a data unit for transmission via a communication channel, the data unit conforming to a first communication protocol, one or more orthogonal frequency division multiplexing (OFDM) symbols of the data unit are generated. Each OFDM symbol of the one or more OFDM symbols (i) occupies a first bandwidth, (ii) is generated with a first tone spacing, and (iii) includes a set of pilot tones. The first tone spacing is a fraction 1/N of a second tone spacing, the second tone spacing defined for the first bandwidth by a second communication protocol. The set of pilot tones includes a same number of pilot tones as defined for the first bandwidth by the second communication protocol. The data unit is generated to include the one or more OFDM symbols in a data portion of the data unit.
Abstract:
One or more first padding bits are added to information bits to be included in a data portion of a data unit such that the information bits, after being encoded, fill one or more OFDM symbols up to a boundary within a last OFDM symbol. The information bits and the first padding bits are encoded to generate coded bits. After encoding, coded bits corresponding to the last OFDM symbol are padded, or constellation points generated based on the coded bits corresponding to the last OFDM symbol are padded, such that the padded coded bits or the padded constellation points occupy a remaining portion of the last OFDM symbol after the boundary. The last OFDM symbol of the data portion is generated to include the coded information bits corresponding to the last OFDM symbol, the first padding bits and second padding bits or padding constellation points added after encoding.
Abstract:
Systems, apparatuses and methods described herein provide a method for padding a signal extension of orthogonal frequency-division multiplexing (OFDM) symbols. A transceiver may obtain. a plurality of data symbols for transmission, and determine that a number of information bits for a last symbol of the plurality of data symbols is not an integer value. A special padding rule may be applied to add padding bits to the last symbol. A number of coded bits for the last symbol may be determined when the number of information bits for the last symbol has changed, and the plurality of data symbols for data transmission may be encoded based on the determined number of coded bits for the last symbol.
Abstract:
A communication device in a wireless local area network (WLAN) generates a first portion of a wakeup radio (WUR) packet and a second portion of the WUR packet. The first portion of the WUR packet corresponds to a WLAN legacy physical layer (PHY) preamble. Generating the second portion of the WUR packet includes: generating the second portion of the WUR packet to include a WUR packet PHY sync signal. The WUR packet PHY sync signal corresponds to a sync bit sequence with each bit in the sync bit sequence modulated by a sync waveform. The second portion of the WUR packet is generated to also include a PHY data portion and a padding signal. The padding signal corresponds to a padding bit sequence with each bit in the padding bit sequence modulated by the sync waveform. The communication device transmits the WUR packet in the WLAN.