Abstract:
Provided are a method for operating a user equipment in a wireless communication system and the user equipment for performing same. The user equipment receives a plurality of channel state information (CSI) reference signal (RS) configurations for indicating different usages, and performs an action based on each of the CSI RS configurations.
Abstract:
A method for a base station to transmit a channel-state-information reference signal for up to 8 antenna ports includes mapping, in accordance with a predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports onto a data region of a downlink subframe having an extended cyclic prefix (CP) structure, and transmitting the downlink subframe onto which the channel-state-information reference signal for up to 8 antenna ports has been mapped; and, in the predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports in mapped onto 2 OFDM symbols on the data region of the downlink subframe, with a definition for mapping onto at least one of 4 subcarrier wave positions in each of the 2 OFDM symbols, and the 4 subcarrier wave positions defined in the predetermined pattern can be disposed at 3 subcarrier wave intervals.
Abstract:
A method of downlink subchannelization in a wireless communication system includes: transmitting a network entry and network discovery information including an open loop (OL) region parameter; and mapping a physical resource unit (PRU) to a contiguous resource unit (CRU) or a distributed resource unit (DRU) with respect to ith frequency partition based on the OL region parameter, wherein a permutation sequence used for mapping a PRU of the ith frequency partition (PRUFPi) to a CRU of the ith frequency partition (CRUFPi) or a DRU of the ith frequency partition (DRUFPi) is determined by a seed value, and the seed value is set to be a particular value according to the value of the OL region parameter.
Abstract:
The present invention relates to a terminal which receives signals from a base station, and to a method in which the terminal receives signals from the base station in a distributed antenna system (DAS). The terminal receives, from the base station having a plurality of antennas, control information on one or more active transmission antennas allocated to the terminal, from among the plurality of antennas, and receives signals from the base station via said one or more active transmission antennas.
Abstract:
An apparatus for transmitting and receiving data in a wireless communication system method thereof are disclosed. In a terminal of a wireless communication system, the present invention includes receiving a physical downlink control channel (hereinafter abbreviated PDCCH), receiving a physical downlink shared channel (hereinafter abbreviated PDSCH), and demodulating the PDSCH by interpreting the PDCCH according to a type of a subframe including the PDCCH and the PDSCH.
Abstract:
A method for receiving a superframe header at a mobile station in a wireless mobile communication system is disclosed. The method comprises receiving a sub-frame including the superframe header and a first data channel and decoding the received superframe header. Herein, the superframe header is located within a predetermined physical frequency band and the predetermined physical frequency band includes a synchronization channel.
Abstract:
A method for a base station to transmit a channel-state-information reference signal for up to 8 antenna ports includes mapping, in accordance with a predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports onto a data region of a downlink subframe having an extended cyclic prefix (CP) structure, and transmitting the downlink subframe onto which the channel-state-information reference signal for up to 8 antenna ports has been mapped; and, in the predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports in mapped onto 2 OFDM symbols on the data region of the downlink subframe, with a definition for mapping onto at least one of 4 subcarrier wave positions in each of the 2 OFDM symbols, and the 4 subcarrier wave positions defined in the predetermined pattern can be disposed at 3 subcarrier wave intervals.
Abstract:
Provided is a method for measuring interference by a user equipment (UE) in a multi-node system comprising inside a cell a base station and a plurality of nodes that are controlled by the base station, and the user equipment for same. The method comprises: receiving from the base station a cell-specific interference measurement setting message; and measuring the interference in a resource region indicated by the cell-specific interference measurement setting message, wherein the cell-specific interference measurement setting message is characterized by all of the nodes in the cell comprising information for setting a cell-specific interference measurement region for transmitting a zero-power channel state information (CSI) reference signal (RS).
Abstract:
A method of transmitting a reference signal by a base station in a wireless communication system is provided. The method includes: generating a plurality of reference signals for channel measurement, wherein the plurality of reference signals for channel measurement are different types; and transmitting the plurality of reference signals for channel measurement, wherein the plurality of reference signals for channel measurement are transmitted using one or more subframes as a duty cycle.
Abstract:
A method is provided for receiving aperiodic channel state information (CSI). A base station (BS) transmits, to a user equipment (UE), an uplink downlink control information (DCI) format. The BS receives, from the UE, aperiodic CSI through a physical uplink shared channel (PUSCH) if the BS triggers an aperiodic CSI report using a CSI request field included in the uplink DCI format. The CSI request field is either a 1-bit field or a multi-bit field. When the UE is configured with only one cell, the 1-bit field is included in the uplink DCI. When the UE is configured with more than one channel state information-reference signal (CSI-RS), the multi-bit field is included in the uplink DCI.