Abstract:
According to one embodiment, a magnetic head includes first to fourth shields, first to fourth terminals, and first magnetic member. The third shield includes a first partial region and a second partial region. The fourth shield includes a third partial region and a fourth partial region. The first magnetic member is provided between a portion of the first shield and a portion of the second shield in a first direction from the first shield to the second shield. The first magnetic member is provided between the first partial region and the third partial region in a second direction crossing the first direction. The portion of the first shield is located between the second partial region and the fourth partial region in the second direction.
Abstract:
According to one embodiment, a magnetic sensor includes a first magnetic element, a second magnetic element, a third magnetic element located between the first and second magnetic elements in a first direction, a fourth magnetic element located between the third and second magnetic elements in the first direction, a first conductive member, a second conductive member, a third conductive member located between the first and second conductive members in the first direction, a fourth conductive member located between the third and second conductive members in the first direction, a first magnetic member, a second magnetic member, a third magnetic member located between the first and second magnetic members in the first direction, a fourth magnetic member located between the third and second magnetic members in the first direction, and a fifth magnetic member located between the third and fourth magnetic members in the first direction.
Abstract:
According to one embodiment, a magnetic sensor includes a first sensor element and a first interconnect. The first sensor element includes a first magnetic layer, a first opposing magnetic layer, and a first nonmagnetic layer provided between the first magnetic layer and the first opposing magnetic layer. A first magnetization of the first magnetic layer is aligned with a first length direction crossing a first stacking direction from the first magnetic layer toward the first opposing magnetic layer. At least a portion of the first interconnect extends along the first length direction. The first interconnect cross direction crosses the first length direction and is from the first sensor element toward the portion of the first interconnect. A first electrical resistance of the first sensor element changes according to an alternating current flowing in the first interconnect and a sensed magnetic field applied to the first sensor element.
Abstract:
According to one embodiment, a magnetic sensor includes a first element. The first element includes a first magnetic part, a first magnetic layer, a first nonmagnetic portion, and a first intermediate magnetic layer. The first magnetic part includes first to third portions. The first portion is between the second and third portions. The first portion has a first length and a second length. The second portion has at least one of a third length longer than the first length or a fourth length longer than the second length. The third portion has at least one of a fifth length longer than the first length or a sixth length longer than the second length. The first nonmagnetic portion is provided between the first portion and the first magnetic layer. The first intermediate magnetic layer is provided between the first portion and the first nonmagnetic portion.
Abstract:
According to one embodiment, an electromagnetic wave attenuator includes a plurality of magnetic layers, and a plurality of nonmagnetic layers. The plurality of nonmagnetic layers is conductive. A direction from one of the plurality of magnetic layers toward an other one of the plurality of magnetic layers is aligned with a first direction. One of the plurality of nonmagnetic layers is between the one of the plurality of magnetic layers and the other one of the plurality of magnetic layers. A first thickness along the first direction of the one of the plurality of magnetic layers is not less than ½ times a second thickness along the first direction of the one of the plurality of nonmagnetic layers.
Abstract:
In one embodiment, there are provided: a substrate; a data area disposed on the substrate and having a plurality of first magnetic dots arrayed in lines in mutually different first, second, and third directions; and a boundary magnetic part having a plurality of first magnetic portions arrayed in a line in the third direction and each having a length longer than that of the first magnetic dot in the third direction, and a second magnetic dot disposed between the first magnetic portions and disposed on extensions in the first and second directions of the first magnetic dots, and disposed along with the data area on the substrate.
Abstract:
A magnetic recording and reproducing device according to an embodiment includes a magnetic recording medium and a controller. The magnetic recording medium includes in sequence a substrate, a storage layer, an exchange layer, and a surface recording layer. The controller executes following steps (1) to (6): (1) magnetically recording first information on the surface recording layer; (2) transferring the first information recorded on the surface recording layer to the storage layer; (3) magnetically recording second information on the surface recording layer; (4) magnetically reproducing the second information from the surface recording layer; (5) transferring the first information recorded on the storage layer to the surface recording layer; and (6) magnetically reproducing the first information transferred to the surface recording layer.
Abstract:
A magnetic memory device comprises a first electrode, a second electrode, a laminated structure comprising plural first magnetic layers being provided between the first electrode and the second electrode, a second magnetic layer comprising different composition elements from that of the first magnetic layer and being provided between plural first magnetic layers, a piezoelectric body provided on a opposite side to a side where the first electrode is provided in the laminated structure, and a third electrode applying voltage to the piezoelectric body and provided on a different position from a position where the first electrode is provided in the piezoelectric body.
Abstract:
In one embodiment, there are provided: a substrate; a data area disposed on the substrate and having a plurality of first magnetic dots arrayed in lines in mutually different first, second, and third directions; and a boundary magnetic part having a plurality of first magnetic portions arrayed in a line in the third direction and each having a length longer than that of the first magnetic dot in the third direction, and a second magnetic dot disposed between the first magnetic portions and disposed on extensions in the first and second directions of the first magnetic dots, and disposed along with the data area on the substrate.