Abstract:
Systems and methods for improved inter-frequency measurement are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may determine a measurement pattern indicating when the UE should perform inter-frequency measurements. The measurement pattern may be selected such that the UE performs measurements more often than once per measurement cycle. The measurement pattern may be selected to balance timing requirements for the UE with increased power consumption that may result from more frequent measurements. The eNB may determine the measurement pattern based on an estimate of UE speed and a number of frequencies to be monitored. A default pattern may be used if the UE speed and/or number of frequencies do not exceed predetermined thresholds.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may transmit signaling to indicate D2D discovery zone configuration to proximity service (ProSe) enabled UEs. The signaling may indicate time and frequency resources and a periodicity of a discovery zone and may indicate operational parameters for the discovery zone. The resources of the D2D discovery zone may be allocated for D2D discovery signal transmission by the ProSe-enabled UEs.
Abstract:
Technology for performing device-to-device (D2D) communications is disclosed. A user equipment (UE) can identify D2D data to be transmitted from the UE. The D2D data can be identified when the UE is in a radio resource control (RRC) idle. The UE can be limited to using a defined resource allocation mode to transmit the D2D data from the UE. A service request procedure can be initiated at the UE. The service request procedure can trigger the UE to perform an RRC connection establishment procedure with an evolved node B (eNB) to switch the UE from the RRC idle mode to an RRC connected mode. The UE can receive an uplink (UL) grant from the eNB for communicating the D2D data from the UE. The UE can send the D2D data using the UL grant provided by the eNB.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
A technology is disclosed for a user equipment (UE) that is operable to dynamically change an uplink/downlink (UL/DL) configuration in a communications network. A radio resource control (RRC) connection can be requested with an enhanced node B (eNode B). A UE Capability Information information element (IE) can be communicated to the eNode B to indicate an enhanced interference mitigation and traffic adaptation (eIMTA) capability of the UE to support an eIMTA time duplex domain (TDD) UL/DL reconfiguration functionality. An eIMTA configuration information can be received at the UE information within a RRCConnectionSetup message or a RRCConnectionReconfiguration message.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for identifying subframes in a radio frame on which a UE may receive a Physical Downlink Control Channel (PDCCH) or enhanced PDCCH (ePDCCH) transmission. Specifically, the UE may receive multiple indications of uplink/downlink (UL/DL) subframe configurations and identify one or more subframes in which the UE may receive the PDCCH or ePDCCH transmission. The UE may then monitor one or more of the identified subframes and base discontinuous reception (DRX) timer functionality on one or more of the identified subframes.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for identifying subframes in a radio frame on which a UE may receive a Physical Downlink Control Channel (PDCCH) or enhanced PDCCH (ePDCCH) transmission. Specifically, the UE may receive multiple indications of uplink/downlink (UL/DL) subframe configurations and identify one or more subframes in which the UE may receive the PDCCH or ePDCCH transmission. The UE may then monitor one or more of the identified subframes and base discontinuous reception (DRX) timer functionality on one or more of the identified subframes.
Abstract:
The techniques introduced here provide for device discovery of a greater number of mobile devices in a mobile network by increasing the multiplexing capacity of the system. The techniques may be applied to device-to-device communication networks and small cells using low power nodes (e.g., pico and femto eNodeB in a 3GPP LTE or LTE advanced network). Additionally, the techniques provide for mapping between a mobile device ID and an orthogonal resource of the discovery signal.