Abstract:
Embodiments of a User Equipment (UE) and methods for packet based device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, UE may be enabled for proximity services and may be configured to receive signaling from an enhanced node B (eNB) indicating resources allocated for D2D discovery. The UE may configure a discovery packet in accordance with a predetermined configuration to have at least a discovery payload and a cyclic-redundancy check (CRC). The discovery payload may include discovery-related content. The UE may be configured to transmit the discovery packet on at least some of the indicated resources for receipt by a receiving UE. In some embodiments, a demodulation reference signal (DMRS) may be selected to indicate a payload size and/or MCS of the discovery packet's payload.
Abstract:
Embodiments of a Generation Node-B (gNB), User Equipment (UE) and methods for communication are generally described herein. The gNB may allocate a resource pool of physical resource blocks (PRBs) and sub-frames for vehicle-to-vehicle (V2V) sidelink transmissions. The gNB may receive, from a UE, an uplink control message that indicates that the UE requests a V2V sidelink transmission of a prioritized message. The gNB may select, for the V2V sidelink transmission of the prioritized message, one or more PRBs and one or more sub-frames. The gNB may transmit, to the UE and to other UEs, a downlink control message that indicates: the selected PRBs, the selected sub-frames, and that the other UEs are to mute sidelink transmissions in the selected PRBs in the selected sub-frames to enable the V2V sidelink transmission of the prioritized message.
Abstract:
An electronic device for use in a machine type communication (MTC) relay device includes circuitry having: a receive signal path to receive data from at least one MTC device; and a transmit signal path to forward processed data, based on the data, to an evolved NodeB (eNB), wherein at least one of: (a) the data is received via Device-to-Device (D2D) sidelink; (b) the MTC relay device is a relay node and the data is received via a relaying link; or (c) the MTC relay device is a multi-radio access technology (multi-RAT) capable small cell device and the data is received via WiFi, Bluetooth, Long-Term Evolution-Unlicensed (LTE-Unlicensed), or mmWave communication.
Abstract:
Technology for a user equipment (UE) operable to perform device to device (D2D) discovery in a wireless network is described. The UE can decode D2D discovery parameters received from an eNodeB. The UE can determine a UE D2D discovery resource from the D2D discovery resource allocation based, in part, on the D2D discovery parameters. The UE can encode a D2D discovery message for transmission from the UE to a second UE using the UE D2D discovery resource in the D2D discovery resource allocation.
Abstract:
A method to trigger aperiodic CSI reports in LTE TDD systems having dynamic uplink-downlink configurations is proposed. When uplink grants can be sent on any subframe, the method further defines how to indicate which measured subframe set is to be used in reporting the aperiodic CSI. The method is useful for homogeneous networks and networks employing enhanced interference management and traffic adaptation (eIMTA).
Abstract:
A technology is disclosed for an evolved Node B (eNB). The eNB can determine a set of configuration indication fields numbered 1 to N, included in a downlink control information (DCI) format Y carried on the PDCCH, where N = ⌊ L format Y M ⌋ , Lformat Y is equal to a payload size of the DCI format Y, and M is a number of bits of each indication field. The eNB can map the DCI format Y onto the PDCCH. The eNB can encode for transmission from to the UE the PDCCH with a cyclic redundancy check (CRC) scrambled by an enhanced interference mitigation and traffic adaptation (eIMTA) Radio-Network Temporary Identifier (RNTI) for the UE.
Abstract:
A user equipment (UE) enables synchronous peer-to-peer communication between devices for out of network coverage and partial network coverage scenarios. The UE performs a synchronization procedure and selects a spectrum resource within an uplink (UL) spectrum for device-to-device (D2D) communication. The UE, representing a synchronization source, generates timing information and synchronization signals for synchronizing a group of wireless communication devices (peer UEs) with the UE in a local synchronization area. The UE transmits, in selected or pre-allocated time or frequency resources, a synchronization signal including the timing information in order to synchronize devices in the local synchronization area.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may transmit signaling to indicate D2D discovery zone configuration to proximity service (ProSe) enabled UEs. The signaling may indicate time and frequency resources and a periodicity of a discovery zone and may indicate operational parameters for the discovery zone. The resources of the D2D discovery zone may be allocated for D2D discovery signal transmission by the ProSe-enabled UEs.
Abstract:
A wireless communication device is configured to perform resource allocation of device-to-device (D2D) communication in a UE. Synchronization establishing circuitry is provided to acquire radio resource synchronization and to establish a time-frequency resource grid having resource units allocation to a D2D communication. Signal metric evaluation circuitry is provided to evaluate resource unit(s) of a received signal using a signal metric when the time-frequency resource grid has been established. Radio resource selection circuitry is provided to select a time resource of the time-frequency resource grid for allocation to a D2D communication depending upon a result of the resource unit evaluation. Other embodiments may be described and claimed.
Abstract:
Embodiments of a system and method for distributed channel access for device-to-device (D2D) communication in a wireless network are generally described herein. User equipment (UE) may transmit a connection identifier (CID) code at a beginning of a contention window to request channel access for a D2D transmission to a receiving device. Links for D2D transmissions from a transmitting device to a receiving device are identified by a CID that is mapped to a CID code. The UE may receive a bandwidth grant from the receiving device during the contention window, along with bandwidth grants for other CIDs, in an order based on a priority level of the CID. The UE may transmit data after reception of the bandwidth grants in time-frequency resources indicated in an associated one of the bandwidth grants. In some embodiments, spatial-reuse and variable resource size allocation are supported.