摘要:
Semiconductor devices with composite etch stop layers and methods of fabrication thereof. An semiconductor device with a composite etch stop layer includes a substrate having a conductive member, a first etch stop layer on the substrate and the conductive member, a second etch stop layer and a dielectric layer sequentially over the second etch stop layer, having a conductive layer therein down through the dielectric layer, the second etch stop layer and the first etch stop layer to the conductive member.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organo silane compound and an oxidizing gas. The oxidized organo silane film has excellent barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organo silane film can also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organo silane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organo silane film is produced by reaction of methyl silane, CH3SiH3, and N2O.
摘要翻译:一种通过有机硅烷化合物和氧化性气体反应沉积低介电常数膜的方法和装置。 氧化的有机硅烷膜具有优异的阻挡性能,用作与其它电介质层相邻的衬垫层或盖层。 氧化的有机硅烷膜也可以用作制造双镶嵌结构的蚀刻停止层或金属间介质层。 氧化的有机硅烷膜也提供了不同介电层之间的极好的粘附性。 优选的氧化有机硅烷膜是通过甲基硅烷,CH 3 3 SiH 3 N 2和N 2 O 2的反应制备的。
摘要:
A structure for a multi-level interconnect inter-level dielectric layer (ILD), a method of manufacturing thereof, and a semiconductor device including the ILD layer. The ILD layer includes a first low-dielectric constant material sub-layer, and a second low-dielectric constant material sub-layer disposed over the first low-dielectric constant material sub-layer. The second low-dielectric constant material sub-layer has at least one different material property than the first low-dielectric constant material sub-layer. A third low-dielectric constant material sub-layer is disposed over the second low-dielectric constant material sub-layer, the third low-dielectric constant material sub-layer having at least one different material property than the second low-dielectric constant material sub-layer. The first, second and third low-dielectric constant materials sub-layers are preferably comprised of the same material, deposited continuously in one or more deposition chambers while the deposition conditions such as the gas flow rate, power, or gas species are adjusted or changed.
摘要:
The present invention relates to an improved integrated circuit structure including adjacent conductive and dielectric layers having a continuous, planar top surface, produced by a process which includes treating the surface with a silane compound, followed by depositing an etch stop layer over the surface, wherein a glue layer is not applied to the surface.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O; at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.
摘要:
A bilayer porous low dielectric constant (low-k) interconnect structure and methods of fabricating the same are presented. A preferred embodiment having an effective dielectric constant of about 2.2 comprises a bottom deposited dielectric layer and a top deposited dielectric layer in direct contact with the former. The bottom layer and the top layer have same atomic compositions, but a higher dielectric constant value k. The bottom dielectric layer serves as an etch stop layer for the top dielectric layer, and the top dielectric layer can act as CMP stop layer. One embodiment of making the structure includes forming a bottom dielectric layer having a first porogen content and a top dielectric layer having a higher porogen content. A curing process leaves lower pore density in the bottom dielectric layer than that left in the top dielectric layer, which leads to higher dielectric value k in the bottom dielectric layer.
摘要:
A method for manufacturing an integrated circuit is provided. In one example, the method includes forming a substantially nitrogen-free silicon carbide layer over a substrate using a methyl silicate gas.
摘要:
A method of fabricating a semiconductor device. A semiconductor substrate with a patterned conductive layer on a top surface of the substrate is first provided. A dielectric layer is then formed to cover the substrate. Thereafter, an electron beam irradiation procedure is performed to anneal the patterned conductive layer and reduce resistance of the patterned conductive layer.
摘要:
A method for forming a multi-level semiconductor device to eliminate conductive interconnect protrusions following a WAT test, the method including forming a first metallization layer; carrying out a wafer acceptance testing (WAT) process; and, then carrying out a chemical mechanical polish (CMP) on the metallization layer.
摘要:
A method of manufacturing a semiconductor device having a porous, low-k dielectric layer is provided. A preferred embodiment comprises the steps of forming a porogen-containing, low-k dielectric layer, in the damascene process. In preferred embodiments, pore generation, by e-beam porogen degradation, occurs after the steps of CMP planarizing the damascene copper conductor and depositing a semipermeable cap layer. In alternative embodiments, the cap layer consists essentially of silicon carbide, silicon nitride, Co, W, Al, Ta, Ti, Ni, Ru, and combinations thereof. The semipermeable cap layer is preferably deposited under PECVD conditions such that the cap layer is sufficiently permeable to enable removal of porogen degradation by-products. Preferred embodiments further include an in-situ N2/NH3 treatment before depositing the semipermeable cap layer.