Abstract:
A LoC (Lab on a Chip) is described to analyze surface properties of fluid drops. Substrates with cavities near the edge are filled with fluids that have a contact angle greater than 90°. The surfaces of two different drops can be brought in contact with one another by using Coulomb forces. Several experiments can be carried out while the drops are in contact: the concentration of the fluid in each drop can be altered, tangential and normal forces can be applied to the contact surface, voltage differences across and current flow through the contact surface can be monitored. MEMS pumps can be used to mix reagents or buffers with the fluid to determine the protein concentration or to extract DNA from whole cells, respectively. Substrates holding optical components can be used to align fibers with either lasers or receivers. The alignment is automatic and controlled by a control unit.
Abstract:
At least one non-volatile device is coupled to a first Coulomb island. The floating gates of these non-volatile devices are connected to the island and can charge the Coulomb islands. One device can charge the island positively while a second device can be used to charge the island negatively. The Coulomb island can have a small probe opening where a charge can be introduced by using mechanical means such as an external probe or a MEMS switch. A fully charged capacitor formed in a first substrate can provide additional energy to a levitated substrate if the first substrate is connected to the levitated substrate. Bonding wires can be attached to a substrate that is attached to a mother substrate. Then, Coulomb forces can levitate the substrate from the mother substrate and the bonding wires can provide a source of power to the levitated substrate.
Abstract:
Coulomb islands are charged to create Coulomb forces which are applied between a first and second substrate. The Coulomb islands are used to levitate the first substrate over the second substrate into an equilibrium position. A processing unit monitors the values of capacitors formed between the substrates to provide feedback information to maintain the first substrate in this equilibrium position. The first substrate can be an accelerometer that can be used to calculate the direction and magnitude of a deceleration. The processing unit sends the digital information to a bus coupled to a plurality of air bags. The digital information identifies the appropriate air bags that need to be enabled to minimize the impact of a crash. Vertical changes in acceleration can also be detected making this invention applicable for flight vehicles.
Abstract:
The basic invention uses a positive air pressure port to loosen foreign objects into a cavity and a negative air pressure port to vacuum these objects from the cavity. The positive air pressure port can be used as a substitute for a mechanical beater brush. Removing the beater brush allows the weight of the housing unit to be reduced. The number of positive air pressure ports can be reduced to increase the exit velocity of the air flow out of a single port focusing the energy of the compressed air to a smaller area of the surface which loosens hard to remove foreign objects from the surface. A motor can be used to sweep a single positive air pressure port in a back and fort motion to automatically clean the surface. Finally, the housing unit can be made transparent to view the surface as it is being cleaned.
Abstract:
CMOS LC tank circuits and flux linkage between inductors can be used to distribute and propagate clock signals over the surface of a VLSI chip or μprocessor. The tank circuit offers an adiabatic behavior that recycles the energy between the reactive elements and minimizes losses in a conventional sense. Flux linkage can be used to orchestrate a number of seemingly individual and distributed CMOS LC tank circuits to behave as one unit. Several frequency-adjusting techniques are presented which can be used in an distributed clock network environment which includes an array of oscillators. A passive flux linkage, mechanical, and finite state machine technique of frequency adjustment of oscillators are described.
Abstract:
Placing inductors or resistors in parallel causes the combined value of inductance or resistance to decrease according to the parallel combination rule. This invention decreases the parasitic resistance of an inductor by placing several inductors in parallel. Furthermore, by careful placement of these inductors, the mutual inductance between these inductors can be used to increase the equivalent inductance value to a value near that of the original inductance value of a single inductor. Thus, it is possible to create an inductance with a much lower value of parasitic resistance. This invention allows the formation of high Q inductors and would be beneficial in any circuit design requiring inductances. Another aspect of this invention is that the coils can be partitioned to minimize eddy current losses. This invention can easily be implemented in a planar technology. Simulations of several tank circuits indicate that the power dissipation can be reduced 3 to 4 times when compared to conventional techniques.
Abstract:
A static latch circuit is used to suppress crosstalk glitch in a synchronous digital integrated circuit. A static latch is inserted into a selected victim net, and the net is examined if crosstalk glitch induced in the selected victim net is sufficiently suppressed. If not, then the selected victim net is examined to check whether the crosstalk glitch is primarily due to propagated noise from an earlier stage or due to noise injected in the selected victim net. If the crosstalk glitch is propagated from an earlier stage, then a second static latch is inserted before the state in which the first static latch is inserted. Alternatively, another static latch may be inserted in the selected victim net. Cell libraries including a variety of static latch circuit architectures can be designed.
Abstract:
A variable capacitance circuit on an integrated circuit comprises a MOS transistor, and a capacitance multiplier connected to one end of a channel of the MOS device. A MOS device is formed in series with an inductance, and a capacitance multiplier is formed to be connected to a node between the MOS device and the inductance.
Abstract:
Integrated circuit fabrication techniques are provided which allow non-horizontal/non-vertical wires to traverse the entire chip surface, rather than just the comers as in the conventional Manhattan geometry, while interconnecting circuit points. This is achieved by employing a variable rotational assignment methodology with respect to the interconnect layers or levels during the IC fabrication operation. These techniques thus eliminate the litho step problem, reduce interconnect distances and lessen the influence of capacitance interaction between interconnect wires.