Abstract:
The present invention discloses a light-emitting device, array substrate, display device and manufacturing method of light-emitting device. The light-emitting device comprises a substrate and a pixel define layer provided on the substrate, the pixel define layer defines at least one pixel unit, each of which comprises a plurality of first electrodes, an organic layer provided on the plurality of first electrodes, and a second electrode provided on the organic layer. The light-emitting device, array substrate, display device and manufacturing method provided by the present invention can allow the formed film of the organic layer on the first electrodes to have good flatness and allow portions of the organic layer on different first electrodes to have substantially the same thickness, thus flatness and uniformity of the formed film of the organic layer in the light-emitting device is improved and further display quality of the light-emitting device is improved.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate comprises a gate electrode layer, an active layer and a source-drain electrode layer that are disposed on a substrate. The substrate comprises a storage capacitance region thereon II. In the storage capacitance region II, projections of the gate electrode layer and the active layer on the substrate are at least partially overlapped, and projections of the active layer and the source-drain electrode layer on the substrate are at least partially overlapped. The array substrate can effectively increase the storage capacitance without increasing an area occupied by the storage capacitance region, which is advantageously to reduce a pixel area and increase PPI.
Abstract:
The present invention provides a method for manufacturing an array substrate comprising: sequentially forming an adhesion enhancement layer, a copper-bearing metal layer and a photoresist layer on a substrate, and respectively forming a reserved region and a removal region by performing exposure and development on the photoresist layer using a mask plate, simultaneously processing the adhesion enhancement layer, the copper-bearing metal layer and the photoresist layer in the removal region by a single wet etching process, to form an adhesion enhancement intermediate layer corresponding to the adhesion enhancement layer, a copper-bearing metal intermediate layer corresponding to the copper-bearing metal layer and the photoresist layer thereon in the reserved region; simultaneously processing the adhesion enhancement intermediate layer, the copper-bearing metal intermediate layer and the photoresist layer by a dry etching process, then stripping off the photoresist layer, to form a patterned adhesion enhancement layer and a patterned copper-bearing metal layer respectively.
Abstract:
Embodiments of the present invention provide a gas detection sensor, a display panel, and a display device. The gas detection sensor comprises: a gas sensitive part; two detection electrodes electrically connected with each other through the gas sensitive part; and a protective layer enclosing the gas sensitive part and the detection electrodes. When one of the detection electrodes is applied with a detecting signal, the detecting signal is output from the other detection electrode after being modulated by the gas sensitive part, and a voltage signal output by the other detection electrode is related to a nature of the outside air to which the gas sensitive part is exposed, thereby a detection on air quality may be achieved through detecting the voltage signal output from the other detection electrode, such that a simply structured and portable gas detection sensor can be realized.
Abstract:
An encapsulated structure of a light-emitting device, an encapsulating process thereof, and a display device comprising said encapsulated structure. The encapsulated structure of the light-emitting device comprises: a light-emitting device; and a protective layer of a sulfonate salt formed on a top electrode of the light-emitting device, the sulfonate salt having the following structure: wherein the cation X+ is Li+, Na+ or K+; and R is a substituent selected from the group consisting of unsubstituted alkyl groups having more than 5 carbon atoms, substituted alkyl groups having more than 5 carbon atoms, and alkoxyl groups having more than 5 carbon atoms.
Abstract:
A thin film transistor and method for manufacturing the same, an array substrate and a display device are disclosed. The thin film transistor comprises a substrate; a gate electrode, a source electrode, a drain electrode and a semiconductor layer formed on the substrate; a gate insulating layer between the gate electrode and the semiconductor layer or between the gate electrode and the source and drain electrodes; an etching stop layer between the semiconductor layer and the source and drain electrodes having a source contact hole and a drain contact hole therein; and a source buffer layer between the source electrode and the semiconductor layer and a drain buffer layer between the drain electrode and the semiconductor layer. The source and drain electrodes are metal Cu electrodes, and the source and drain buffer layers are Cu alloy layer. The formation of the source and drain buffer layer improves the adhesion of the source and drain electrodes thereon to the semiconductor layer therebeneath, and thus improves the performance of the TFT and image quality.