Abstract:
The present application discloses a needle for repairing an alignment layer on a liquid crystal display substrate. The needle includes a needle tip; and a flexible material coating surrounding the needle tip.
Abstract:
The present application discloses a needle for repairing an alignment layer on a liquid crystal display substrate. The needle includes a needle tip; and a flexible material coating surrounding the needle tip.
Abstract:
A manufacturing method of an array substrate, including: forming a pattern layer including a pixel electrode, and a pattern layer including a gate electrode and a gate line on a base substrate; on the substrate with the pattern layer including the gate electrode and the gate line formed thereon, forming a gate insulating layer, a pattern layer at least including a metal oxide semiconductor active layer and a pattern layer at least including an etch stop layer; wherein, a first via hole for exposing the pixel electrode is formed over the pixel electrode; on the substrate with the etch stop layer formed thereon, forming a pattern layer including a source electrode, a drain electrode and a data line; wherein, the source electrode and the drain electrode each contact a metal oxide semiconductor active layer, and the drain electrode is electrically connected to the pixel electrode through the first via hole.
Abstract:
The invention provides a position-limiting structure for a backlight module, a backlight module and a display device, belongs to the field of display technology, and can solve the problem in the prior art that an alignment error occurs in the light-guiding plate due to the fact that the double-sided adhesive tape is adhered to fix the backplane and the light-guiding plate. The position-limiting structure for a backlight module of the invention is made of an elastic material, and is configured to be connected to the backplane; the position-limiting structure includes the position-limiting part, which is arranged outside an edge at least one non light-incoming side of the light-guiding plate and is configured to fix the light-guiding plate to the backplane.
Abstract:
Embodiments of the present invention disclose a thin film transistor, a method of manufacturing a thin film transistor, an array substrate and a display device, which may ensure electrical connection between source and drain electrodes and an active layer without configuring any through hole due to providing an etch stop layer between the active layer and the source and drain electrodes, a portion of the etch stop layer being in contact with the source and drain electrode is made of metal or metal alloy; and may ensure insulation between the source and the drain electrodes when the thin film transistor is turned-off, ensuring normal operation of the thin film transistor, by oxidating the portion of the etch stop layer at the position between the source and the drain electrodes as an insulating material. The etch stop layer may not only prevent the active layer from being damaged when etching the source and drain electrodes, but also prevent the active layer from other adverse effects from subsequent processes, such as adverse effects from water, hydrogen and oxygen, etc., thereby enhancing performance of the thin film transistor, just because of providing the etch stop layer between the active layer and the source and drain electrodes in the thin film transistor.
Abstract:
A thin film transistor comprises a substrate; a gate electrode, a source electrode, a drain electrode and a semiconductor layer formed on the substrate; a gate insulating layer between the gate electrode and the semiconductor layer or between the gate electrode and the source and drain electrodes; an etching stop layer between the semiconductor layer and the source and drain electrodes having a source contact hole and a drain contact hole therein; and a source buffer layer between the source electrode and the semiconductor layer and a drain buffer layer between the drain electrode and the semiconductor layer. The source and drain electrodes are metal Cu electrodes, and the source and drain buffer layers are Cu alloy layer.
Abstract:
There is provided a thin film transistor, comprising a substrate (1) and a gate layer (3), a gate insulating layer (4), an active layer (5), an electrode metal layer (8) and a passivation layer (9) which are formed on the substrate (1) in sequence; the electrode metal layer (8) comprises a source electrode (8a) and a drain electrode (8b), which are separated from each other with a channel region being defined therebetween; between the gate layer (3) and the substrate (1), there is formed a first transparent conductive layer (2); between the active layer (5) and the electrode metal layer (8), there is formed a second transparent conductive layer (7). The transparent conductive layers (2, 7) are added so that adhesive force between the gate metal layer (3) and the substrate (1) is enhanced, diffusion of the electrode metal to the active layer (5) is prevented.
Abstract:
Embodiments of the present invention provide a thin film transistor and its manufacturing method, an array substrate and a display device, to improve the electrical performance of the thin film transistor and improve the picture quality of images displayed by the display device. The thin film transistor includes: a substrate; a gate, a source, a drain and a semiconductor layer formed on the substrate; a first gate protection layer; a gate isolation layer; and a second gate protection layer. The first gate protection layer is at least partly located between the gate and the semiconductor layer, and is an insulating layer. The gate isolation layer is at least partly located between the first gate protection layer and the second gate protection layer, and is a conductive layer. The second gate protection layer is at least partly located between the gate isolation layer and the semiconductor layer, and is an insulating layer.
Abstract:
The present disclosure provides a display substrate, a manufacturing method of the display substrate and a display apparatus. The display substrate includes a base substrate; an alignment layer, on the base substrate; a first electrode, located between the base substrate and the alignment layer and being in contact with the alignment layer; and a pattern layer, located between the base substrate and the alignment layer and being in contact with the alignment layer. An orthographic projection of the pattern layer on the base substrate does not overlap an orthographic projection of the first electrode on the base substrate, and a ratio of a contact angle of the pattern layer to a contact angle of the first electrode is greater than or equal to 7/12 and less than 3/2.
Abstract:
A thin-film transistor (TFT) and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display device are disclosed. The manufacturing method of a TFT includes: forming an active layer, a gate electrode, a source electrode and a drain electrode respectively electrically connected with the active layer, and a gate insulating layer disposed between the gate electrode and the active layer, so that the gate electrode, the source electrode and the drain electrode are formed in the same patterning process. The method can reduce the number of masks used in the manufacturing process of the TFT or an array substrate, reduce the technology process, improve the productivity, and reduce the production cost.