Abstract:
A crosslinkable quantum dot (QD) and a preparing method thereof, an array substrate made by using the crosslinkable quantum dot (QD) and a preparing method thereof are provided. The surface of the crosslinkable quantum dot has a pair of groups R1 and R2 capable of reacting to form a cross-linked network, or a group R3 capable of being cross-linked by a crosslinking agent to form a cross-linked network.
Abstract:
Embodiments of the invention disclose an OLED device, an AMOLED display device and a method for manufacturing the AMOLED display device. the AMOLED display device comprises a TFT active layer, a pixel electrode layer and an OLED device; the OLED device comprises a cathode layer and a functional layer, and the pixel electrode layer serves as the anode layer of the OLED device; alternatively, the OLED device comprises an anode layer and a functional layer, and the pixel electrode layer serves as the cathode layer of the OLED device. Moreover, the TFT active layer and the pixel electrode layer are formed from a same IGZO film by a patterning process.
Abstract:
A display substrate, an Organic Light Emitting Diode (OLED) display device and a manufacturing method for the display substrate. The display substrate includes a plurality of pixel units located on a substrate and filter functional units corresponding to the pixel units. Each filter functional unit includes at least three micro-cavity structures, wherein the cavity lengths of the three micro-cavity structures in the direction of a vertical substrate are different, only light with a specific wavelength can penetrate through the micro-cavity structures with different cavity lengths, and the cavity lengths of micro-cavity structures corresponding to similar sub-pixel units of the pixel units are the same.
Abstract:
The present invention discloses a WOLED back panel and a method of manufacturing the same. The method comprises: forming a pattern of a color filter layer on a substrate; exposing the pattern of the color filter layer by halftone exposure so as to form a groove structure in the pattern of the color filter layer; forming a pattern of a resin material layer on a surface of the substrate formed with the groove structure, and heavily doping a partial region of the resin material layer so as to form a heavily doped part having a conductivity; the heavily doped partial region of the resin material layer corresponding to a pixel electrode region, a via region, and a connection region between the pixel electrode region and the via region; and forming an organic light-emitting layer and a cathode in order on a surface of the substrate after heavily doping the partial region of the resin material layer. The production cost is reduced in the present invention by forming a groove structure in the color filter layer instead of manufacturing a conventional pixel defining layer.
Abstract:
A touch panel, a manufacturing method thereof and a display device are disclosed. The method for manufacturing the touch panel includes: forming touch electrodes (4) with topological semiconductor characteristics on a substrate (1), in which the touch electrodes (4) with topological semiconductor characteristics are obtained by a topological treatment on a Ge film with functionalized elements. The touch panel manufactured by the method and the display device including the touch panel have high touch sensitivity.
Abstract:
A thin film transistor and manufacturing method thereof, an array substrate and a display device are provided. In the manufacturing method of the thin film transistor, manufacturing an active layer includes: forming a germanium thin film, and forming pattern of the active layer through a patterning process; conducting a topological treatment on the germanium thin film with a functionalized element, so as to obtain the active layer (4) with topological semiconductor characteristics. The resultant thin film transistor has a higher carrier mobility and a better performance.
Abstract:
Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof and a display device. The method for manufacturing the thin film transistor, comprising the following steps: providing a substrate; forming a semiconductor layer on the substrate; forming a gate insulating layer; and forming a gate electrode, wherein the gate insulating layer comprises a first gate insulating layer, the first gate insulating layer being formed by oxidizing a portion of the semiconductor layer, and the unoxidized portion of the semiconductor layer forming an active layer, and wherein the gate electrode is formed in such a way that the gate insulating layer is sandwiched between the gate electrode and the active layer.
Abstract:
Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof and a display device. The method for manufacturing the thin film transistor, comprising the following steps: providing a substrate; forming a semiconductor layer on the substrate; forming a gate insulating layer; and forming a gate electrode, wherein the gate insulating layer comprises a first gate insulating layer, the first gate insulating layer being formed by oxidizing a portion of the semiconductor layer, and the unoxidized portion of the semiconductor layer forming an active layer, and wherein the gate electrode is formed in such a way that the gate insulating layer is sandwiched between the gate electrode and the active layer.
Abstract:
An antenna, a display substrate and a display device are provided in the present disclosure, wherein the antenna includes a first conductive layer (11), a dielectric layer (12) and a second conductive layer (13) which are stacked; the first conductive layer (11) is provided with at least one slot (111); the second conductive layer (13) includes at least one conductive structure (130), the conductive structure (130) is a comb structure, the conductive structure (130) includes a first conductive element (131) and a plurality of second conductive elements (132), the first conductive element (131) constitutes a comb back of the comb structure, and the plurality of second conductive elements (132) constitute comb teeth of the comb structure; at least one conductive structure (130) is disposed corresponding to at least one slot (111).
Abstract:
The present disclosure provides a thin film sensor and a manufacturing method thereof, and belongs to the technical field of sensors. The thin film sensor of the present disclosure has a plurality of conductive-wire regions intersecting each other, and a plurality of hollow-out parts defined by the plurality of conductive-wire regions; the thin film sensor includes: a base substrate; a plurality of conductive wires on the base substrate, with the conductive wires being in the conductive-wire regions one to one; and a functional structure on the base substrate, where the functional structure is configured to allow at least part of light, which is transmitted along a preset direction and enters the functional structure from the conductive wire-regions, to exit from the hollow-out parts, and the preset direction is a direction from the base substrate towards the conductive wires.