Abstract:
The present invention discloses a WOLED back panel and a method of manufacturing the same. The method comprises: forming a pattern of a color filter layer on a substrate; exposing the pattern of the color filter layer by halftone exposure so as to form a groove structure in the pattern of the color filter layer; forming a pattern of a resin material layer on a surface of the substrate formed with the groove structure, and heavily doping a partial region of the resin material layer so as to form a heavily doped part having a conductivity; the heavily doped partial region of the resin material layer corresponding to a pixel electrode region, a via region, and a connection region between the pixel electrode region and the via region; and forming an organic light-emitting layer and a cathode in order on a surface of the substrate after heavily doping the partial region of the resin material layer. The production cost is reduced in the present invention by forming a groove structure in the color filter layer instead of manufacturing a conventional pixel defining layer.
Abstract:
Embodiments of the invention provide a thin film transistor, a method of manufacturing the same, an array substrate comprising the thin film transistor and a display device. The method of manufacturing the thin film transistor comprises steps of forming a gate electrode (220), a gate insulating layer (230), an oxide active layer (240), a source electrode (260) and a drain electrode (270) on a substrate (210). After forming the oxide active layer (240), the method further comprises a step of forming an etch barrier layer (250) of a metal oxide on the oxide active layer (240).
Abstract:
A pixel unit is used in an array substrate of a display device. In one embodiment, it comprises a gate line, a source-drain line and a thin-film transistor; and the gate line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and a gate of the thin-film transistor is formed of the first MoW layer. In another embodiment, the source-drain line is in a same overlapped structure; and a source and a drain of the thin-film transistor are formed of the first MoW layer. The first embodiment is achieved by means of a halftone process while the second embodiment is achieved by means of a lift off process. Diffusion of Cu in the gate layer or in the source-drain layer towards the oxide active layer is prevented. Also disclosed is a method for manufacturing the abovementioned pixel unit, an array substrate comprising the abovementioned pixel unit, a display device comprising the abovementioned pixel unit, and a method for manufacturing abovementioned array substrate and display device.
Abstract:
Embodiments of the invention provide a thin film transistor, a method of manufacturing the same, an array substrate comprising the thin film transistor and a display device. The method of manufacturing the thin film transistor comprises steps of forming a gate electrode (220), a gate insulating layer (230), an oxide active layer (240), a source electrode (260) and a drain electrode (270) on a substrate (210). After forming the oxide active layer (240), the method further comprises a step of forming an etch barrier layer (250) of a metal oxide on the oxide active layer (240).
Abstract:
Disclosed are an OLED backplane and fabrication method. The fabrication method comprises: forming a pattern including a TFT on a substrate; forming a passivation layer on the substrate including the TFT pattern; forming a color filter on the substrate including the passivation layer; forming a resin layer on the substrate including the color filter; heavily doping the resin layer of a first region in each sub-pixel on the substrate including the resin layer, the resin layer in the first region being conductive, the first region including a passivation layer via-hole region, a pixel electrode region and a connecting region between the passivation layer via-hole region and the pixel electrode region, the passivation-layer via-hole region being a position where a drain electrode of the TFT is located; and forming an organic light-emitting layer and a cathode sequentially on the substrate after the resin layer of the first region is heavily doped.
Abstract:
The present invention discloses a thin film transistor, a method of manufacturing the thin film transistor, a display substrate and a display apparatus. The method comprising steps of: forming an active material layer on a substrate; forming an etch barrier material layer on the active material layer, wherein the etch barrier material layer being made of a conductive material capable of blocking a source and drain etching liquid; forming an active layer pattern and an initial etch barrier layer pattern by performing a single patterning process on the active material layer and the etch barrier material layer, wherein the initial etch barrier layer pattern comprising a first region, a second region and a third region, the first region and the third region being regions for forming a source and a drain, respectively, the second region being a region of the initial etch barrier layer pattern except the first and third regions; forming the source and the drain in the first region and the third region, respectively, by a patterning process; converting the conductive material in the second region of the initial etch barrier layer pattern into an insulation material by an annealing process, so as to form an etch barrier layer.
Abstract:
The present invention discloses a WOLED back panel and a method of manufacturing the same. The method comprises: forming a pattern of a color filter layer on a substrate; exposing the pattern of the color filter layer by halftone exposure so as to form a groove structure in the pattern of the color filter layer; forming a pattern of a resin material layer on a surface of the substrate formed with the groove structure, and heavily doping a partial region of the resin material layer so as to form a heavily doped part having a conductivity; the heavily doped partial region of the resin material layer corresponding to a pixel electrode region, a via region, and a connection region between the pixel electrode region and the via region; and forming an organic light-emitting layer and a cathode in order on a surface of the substrate after heavily doping the partial region of the resin material layer. The production cost is reduced in the present invention by forming a groove structure in the color filter layer instead of manufacturing a conventional pixel defining layer.