Abstract:
An apparatus and method for partially curing a polymerizable monomer or monomer mixture to form a soft contact lens includes a transport device for transporting a plurality of contact lens molds to a precure station in a low oxygen environment, each contact lens mold including a first and second mold half with a polymerizable monomer or monomer mixture therebetween. A clamping member having a plurality of mold engagement members clamps a first contact lens mold half against a second contact lens mold half for a predetermined pressure and time. While the mold halves of the contact lens mold are clamped, the polymerizable monomer or monomer mixture is exposed to a radiant energy source for polymerizing the polymerizable monomer or monomer mixture contained in each contact lens mold.
Abstract:
An automated means for hydrating and packaging a molded hydrophilic contact lens in one of the mold parts used to mold the lens is provided in which a first robotic assembly removes a plurality of contact lens molds from a production line carrier, each of the lens molds having a contact lens adhered therein. The first robotic assembly transports the molds to a first staging area where the lens molds are sandwiched between a lens mold carrier and a top chamber plate to form a first hydration carrier. The hydration carrier is then transported through a plurality of flushing or extraction stations wherein fresh deionized water is introduced into the hydration chambers at each hydration station to flush leachable substances from the hydration chamber. At each flushing station, fresh deionized water is introduced into the hydration chamber to remove previously extracted impurities and the products of hydrolysis. A final robotic dis-assembly device separates the top chamber plate and lens molds in the mold carrier plate, to provide fully hydrated lenses in a concave lens mold ready for transfer to inspection and packaging stations. Following inspection of the lens, the concave lens mold is dosed with saline and used to form part of the package used to distribute the lens.
Abstract:
An automated means for hydrating a molded hydrophilic contact lens is provided in which a first robotic assembly removes a plurality of contact lens molds from a production line carrier, each of the lens molds having a contact lens adhered therein. The first robotic assembly transports the molds to a first staging area where the lens molds are sandwiched between a lens mold carrier and a top chamber plate to form a first hydration carrier. A first rotary transfer device then hands the first hydration carrier to a second robotic assembly which immerses the first hydration carrier in a hydration bath to hydrate the lens and to release the lens from the lens mold. While the lens is immersed in the hydration bath, each lens is transferred from its respective mold to a lens transfer means found within the top chamber plate. After a predetermined period of time, the second robotic assembly removes the first hydration carrier from the hydration bath and hands the hydration carrier off to a second rotary transfer device which rotates the first hydration carrier and aligns it for transfer to a third robotic assembly. The third robotic assembly then carries the top chamber plate and contact lenses through a series of steps in which the lens mold carrier and lens molds are removed from the top chamber plate. The lenses carried on the lens transfer means are then flushed and transported for assembly with a hydration base member to form a second hydration carrier for processing the lens in subsequent extraction stations. The second hydration carrier is then transported through a plurality of flushing or extraction stations wherein fresh deionized water is introduced into the hydration chambers at each hydration station to flush leachable substances from the hydration chamber. At each flushing station, fresh deionized water is introduced into the hydration chamber to remove previously extracted impurities and the products of hydrolysis. A final robotic dis-assembly device separates the top chamber plate and lens transfer means from the hydration base member, to provide fully hydrated lenses in a concave lens holding means ready for transfer to inspection and packaging stations.
Abstract:
A process for providing degassed complementary concave and convex lens molds to filling and mold assembly stations in a continuous or semicontinuous automated soft contact lens manufacturing system. The process includes injection molding the lens molds, immediately transferring the lens molds to an inert gas atmosphere, degassing the lens molds, and filling the lens molds with a polymerizable monomer under the inert gas prior to mold assembly.
Abstract:
An apparatus for separating individual contact lens mold assemblies that each contain a contact lens mold between a front curve mold half and a back curve mold half, each of the mold halves having annular circumferential flanges, is disclosed. The apparatus comprises a first device for applying steam at a first temperature to the back curve mold half to form a temperature gradient ranging from about 2.5.degree. C. to 6.0.degree. C. between the back curve mold half relative to the front curve mold half, and, a second device including a set of pry tools that are inserted between the circumferential flanges of the front mold and back mold halves of the contact lens mold assembly, the pry tools including a first set of pry fingers for retaining the front curve mold half and a second set of pry fingers for biasing the back curve mold half upwardly at a predetermined force with respect to the front curve mold half to effectively remove the back mold half therefrom.
Abstract:
A method of and apparatus for employing a surfactant which is provided in order to assist in the release from each other of mold components of a multipart mold employed in the molding of polymeric articles; for instance, such as a hydrophilic contact lens, upon completion of the molding process for the polymeric articles. The surfactant is applied in the form of a film or coating on surface portions of one of the mold components in order to facilitate the disengagement between the mold components during demolding, and the removal of excess polymeric molding material adhesively deposited on surfaces thereon.
Abstract:
A method of and apparatus for employing a surfactant which is provided in order to assist in the release from each other of mold components of a multi-part mold employed in the molding of polymeric articles; for instance, such as a hydrophilic contact lens, upon completion of the molding process for the polymeric articles. The surfactant is applied in the form of a film or coating on surface portions of one of the mold components in order to facilitate the disengagement between the mold components during demolding, and the removal of excess polymeric molding material adhesively deposited on surfaces thereon.
Abstract:
Male and female members for contact lenses where either member is able to hold the contact lens as it moves from station to station during the hydration process. The female member fits together with the male member forming a chamber. Each of the members contains a line centrally located so that both surfaces of the contact lens are flushed during the hydration process, and drainage takes place radially on the outside of the mated male and female chamber members. These members may be produced on a frame with a plurality of members, usually eight to a frame, to allow ease of processing. Full automation is possible, and complete and positive lens control during any step of the process through the packaging step is achieved.
Abstract:
An acrylate based bone cement with well balanced low exotherm, low residual monomer, and high strength properties formulated from (1) a liquid component containing at least three different monomeric (meth)acrylates, e.g. a C.sub.1 -C.sub.2 alkyl methacrylate, a straight or branched long chain (meth)acrylate having a molecular weight of at least 168, and a cyclic (meth)acrylate having a molecular weight of at least 168, and (2) a polymer powder component containing (meth)acrylate polymers or copolymers. The final bone cement may also contain conventional additives such as polymerization inhibitors, activators, crosslinkers, X-ray contrast material, polymerization initiators, antibiotics, antiseptics, and the like.