Abstract:
A fuel cell system comprises a humidifier which can humidify a fuel cell even when humidification has become insufficient at start-up of the fuel cell and during normal operation thereof. A water collecting apparatus which collects water in the exhaust gas of the fuel cell, and an auxiliary humidifier which humidifies the gas supply by using collected water from the water collecting apparatus, are provided separate to the water-permeable-type humidifier. The water collecting apparatus comprises a vapor/liquid separator and a collected water storage tank, and the auxiliary humidifier comprises a check valve, a collected water supply pump, an auxiliary humidification pipe, and an injector. The collected water in the collected water storage tank is transferred by a collected water supply pump, atomized by the injector, and supplied to the intake side of the fuel cell.
Abstract:
A control system for a fuel cell includes a reactant gas supplying unit which supplies a reactant gas to the fuel cell, and a discharged reactant gas flow control unit disposed at an outlet of the fuel cell. The discharged reactant gas flow control unit includes a first control valve and a second control valve disposed in parallel with the first control valve. The second control valve has a different pressure-flow control characteristic as compared with the first control valve. Only the second control valve controls the flow rate of a discharged reactant gas until the flow rate exceeds a predetermined value, and the second control valve together with the first control valve controls the flow rate of the discharged reactant gas when the flow rate of the discharged reactant gas exceeds the predetermined value.
Abstract:
There are provided an operation determining unit which, when a touch panel is pressed, determines whether or not the press on the touch panel has been an operation on a soft key for designating one of the plurality of functions assigned to the one hard key, and a state transition unit which, when it is determined that the press corresponds to an operation on the soft key, shifts a function acceptability state of the one hard key. Thus, when the soft key corresponding to the hard key is pressed, the function acceptability state of the hard key is shifted to a correct state, even without actually operating one hard key.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A warm-up apparatus GS for a fuel cell 1, 51 comprising: a compressor 22, 71 for feeding supply gas A to the fuel cell 1, 51; a main passage W1, W3 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A; an intercooler 23, 73 arranged in the main passage W1, W3; and a bypass passage W2, W4 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A in such a manner that the supply gas A bypasses the intercooler 23, 73.
Abstract:
When a power generation stop signal of an ignition switch is detected, an oxygen-containing gas is supplied to an anode for starting an anode scavenging process. After starting the anode scavenging process, the remaining electrical energy stored in a capacitor is monitored. If the monitored remaining electrical energy stored in the capacitor is decreased to a threshold, the anode scavenging process is finished. At the end of the anode scavenging process, the remaining electrical energy becomes equal to the threshold. By the remaining electrical energy equal to the threshold, the next operation of the fuel cell system is reliably started. Since the anode scavenging process continues until the remaining electrical energy is decreased to the threshold, the time for the anode scavenging process can be increased as much as possible.
Abstract:
A fuel cell system includes a fuel cell, an oxidant gas passage, a cathode off-gas passage, a fuel gas passage, a circulation passage, an anode off-gas passage, a fuel shutoff valve, a supply device, a humidifier and a control device. The supply device supplies a scavenging gas, which is for scavenging the fuel cell, to the anode and the cathode. The humidifier humidifies the scavenging gas. The control device controls the supply device when the fuel cell is turned off so that supply of the fuel gas to the anode is shut off and the scavenging gas is supplied to the anode and the cathode, wherein supply of the scavenging gas to the cathode is conducted through the humidifier.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A resin layer in which adhesion to a conductive film is higher than that of a sealing resin to the conductive film is disposed on the sealing resin in which it is difficult to form the conductive film, and wiring patterns electrically connected to electronic components are disposed on the resin layer.