Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
Two embodiments of improved compact outboard motors that are designed so that the power head does not encroach into the associated watercraft forwardly of the hull when the motor is tilted up about its tilt axis. In each embodiment, the internal combustion engine of the power head is located in such a way that it can be conveniently serviced and yet will note encroach when the motor is tilted up. In one embodiment, the engine is disposed with its output shaft extending transversely and its cylinders inclined rearwardly. In the other embodiment, the cylinders are aligned and extend vertically so that the engine output shaft extends perpendicularly to the associated hull.
Abstract:
An air inlet is provided at the bottom of a vehicle to open downwardly. The air inlet is connected by a first tube to an air cooler for a PDU and a down converter. A fan for inputting the flow of air and turning its direction 90 degrees is connected at the downstream of the air cooler. The fan is further connected by a second tube to an exhaust outlet. The air inlet is located above a fuel tank thus to prevent any object jumping up from the road surface from straightforwardly entering the air inlet while the vehicle is running. The exhaust outlet is located above a silencer and can thus be prevented from being frozen in the winter. Using the above arrangement, the present invention embodies an air intaking and exhausting apparatus in an air cooling system for air cooling the PDU and the down converter at higher efficiency without the help of the air cooler mounted in the interior of the vehicle.