Abstract:
A rear side connection terminal arranged along the back end edge of a housing is provided with a base part in which at least a portion is embedded in a bottom wall part of the housing, a contact arm part in a cantilever shape in which a tip end extends slanted upwards towards a front end of the housing, a contact part that is connected to a tip end of the contact arm part and that contacts with a terminal member of the card, and a contact arm support part that includes a curved part that projects rearward with a bottom side front end coupled to a back end of the base part and a top side front end coupled to a back end of the contact arm part.
Abstract:
A rear side connection terminal arranged along the back end edge of a housing is provided with a base part in which at least a portion is embedded in a bottom wall part of the housing, a contact arm part in a cantilever shape in which a tip end extends slanted upwards towards a front end of the housing, a contact part that is connected to a tip end of the contact arm part and that contacts with a terminal member of the card, and a contact arm support part that includes a curved part that projects rearward with a bottom side front end coupled to a back end of the base part and a top side front end coupled to a back end of the contact arm part.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
A start-up method for a fuel cell system that includes a fuel cell that carries out power generation by the electrochemical reaction between a fuel gas and the oxygen gas in the air; a fuel gas discharge path and a fuel gas supply path that are connected to the fuel cell; a fuel gas circulation path in which the fuel gas discharge path merges with the fuel gas supply path; and a purge valve provided on the fuel gas circulation path in order to discharge the circulating fuel gas from the fuel gas circulation path. The method includes the steps of opening the purge valve at the same time that the fuel gas is supplied to the fuel cell and replacing the nitrogen gas that originates in the air and is present in the fuel gas circulation path by fuel gas; and closing the purge valve after the nitrogen gas in the fuel gas circulation path has been replaced by the fuel gas.
Abstract:
The invention detects quickly and with high precision abnormalities in fuel cells. In a method of detecting abnormalities in a fuel cell 1 comprising a plurality of unit cells that generate power by supplying hydrogen gas to an anode and supplying air to a cathode of each unit cell, the abnormality in the fuel cell 1 is detected based on the speed of the decrease in the cell voltages after stopping the fuel cell, i.e., after stopping the supply of the reacting gases to the fuel cell.
Abstract:
A radio receiving apparatus of the present invention is for receiving a radio signal having pulsating signals occurring at specific periods, wherein the radio receiving apparatus corrects signal levels received during communication in individual regions into which each of the aforementioned periods is divided based on signal levels received in the individual regions under conditions where the radio signal is not received. As a result of this correction, the radio receiving apparatus of the present invention can decrease the influence of noise having periodicity and improve reliability of communication.
Abstract:
A lens barrel has a base, a second lens holder frame holding a second lens group, a first lens holder frame holding a first lens group, a cam ring, and a fixed ring. The second lens holder frame has three guides projecting axially from an outer circumferential portion of an annular plate and disposed at circumferentially equally spaced intervals. Guide grooves are defined in respective portions of the annular plate which are radially inwardly faced by the guides. Guide posts engage respectively in the guide grooves, so that the second lens holder frame is nonrotatably, but axially movably supported by the guide posts.
Abstract:
A main flexible substrate has a mount surface portion to be mounted to the rear surface of a base, and a movable surface portion extended from the mount surface portion. At a portion of the movable surface portion near the mount surface portion, there is provided an undulatable surface portion undulatable between a bent state of being bent relative to the mount surface portion and separate from the rear surface of the base and a flat state of being mated and mounted to the rear surface of the base. A first soldered terminal portion is formed on the front surface of the undulatable surface portion. A base end portion of a shutter flexible substrate extended to the rear side of the rear surface of the base and a base end portion of a coil flexible substrate are each provided with a second soldered terminal portion.
Abstract:
A method for controlling the flow rate of an oxidizer in a fuel cell system having a fuel cell stack being supplied with fuel and the oxidizer, a compressor for supplying the oxidizer to the fuel cell stack, a back pressure valve for controlling pressure of the oxidizer, and a control device for controlling the fuel cell stack, the compressor, and the back pressure valve. The method includes the steps of calculating an oxidizer pressure command and an oxidizer flow rate command based on a given electrical current command, comparing a first flow rate that is defined as an upper limit of oxidizer flow rate and a second flow rate that is defined as a lower limit of oxidizer flow rate with the oxidizer flow rate command, and regulating the oxidizer flow rate command so as to be limited within a range from the second flow rate to the first flow rate.