Abstract:
A warm-up apparatus GS for a fuel cell 1, 51 comprising: a compressor 22, 71 for feeding supply gas A to the fuel cell 1, 51; a main passage W1, W3 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A; an intercooler 23, 73 arranged in the main passage W1, W3; and a bypass passage W2, W4 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A in such a manner that the supply gas A bypasses the intercooler 23, 73.
Abstract:
A warm-up apparatus GS for a fuel cell 1, 51 comprising: a compressor 22, 71 for feeding supply gas A to the fuel cell 1, 51; a main passage W1, W3 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A; an intercooler 23, 73 arranged in the main passage W1, W3; and a bypass passage W2, W4 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A in such a manner that the supply gas A bypasses the intercooler 23, 73.
Abstract:
A warm-up apparatus GS for a fuel cell 1, 51 comprising: a compressor 22, 71 for feeding supply gas A to the fuel cell 1, 51; a main passage W1, W3 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A; an intercooler 23, 73 arranged in the main passage W1, W3; and a bypass passage W2, W4 connecting the compressor 22, 71 and the fuel cell 1, 51 and feeding supply gas A in such a manner that the supply gas A bypasses the intercooler 23, 73.
Abstract:
A gas-supplying apparatus in a fuel cell comprises a compressor which sucks a supply gas to be supplied to a fuel cell from downstream of said fuel cell, and which compresses an exhaust gas, generated from said supply gas by power generation in the fuel cell, exhausted from the fuel cell, and a heat exchanger which performs heat exchange between said supply gas and said exhaust gas. The apparatus has a simple configuration and improved heat efficiency.
Abstract:
A method for warming up a fuel cell system comprising; a fuel cell which generates electric current due to an electrochemical reaction between hydrogen and oxygen, and which supplies the electric current to a load, an air supply pipe for supplying air to the fuel cell as an oxidant gas, an air exhaust pipe for discharging exhaust air from the fuel cell to an atmosphere, a compressor provided on either of air supply pipe and air exhaust pipe, which carries the air and a communication pipe which returns exhaust air to air supply pipe, and which communicates exhaust air pipe with air supply pipe to form a circulation cycle including compressor. The method of the present invention comprises: detecting a temperature of the fuel cell, and if the temperature of the fuel cell is lower than a first prescribed temperature, heating fuel cell by circulating the air, which has been heated by a heat generated due to adiabatic compression through compressor prior to supplying the electric current to the load from the fuel cell.
Abstract:
A control apparatus for a fuel cell and a fuel cell vehicle is provided capable of controlling a fuel cell installed on a vehicle in an optimized condition. An ECU calculates a target generation current to be output by a current controller from the generation current of the fuel cell, based on a signal of an accelerator opening AC detected by the accelerator opening sensor and a signal of an atmospheric pressure detected by the atmospheric pressure sensor, and the target generation current is input into the current controller as the current command value. The current controller controls the generation current to be output from the fuel cell based on the current command value output from the ECU, that is, the generation command to the fuel cell.
Abstract:
An apparatus for warming-up a fuel cell has means for returning an exhaust gas which returns the exhaust gas to the supply gas depending upon the warning-up conditions of the fuel cell at the time when the supply gas is supplied into the fuel cell and it is discharged as the exhaust gas after utilizing the supply gas in the fuel cell.
Abstract:
Hydrogen stored in a high-pressure tank 21 is supplied to a metal hydride (MH) tank 31 to be occluded. Cooling water of a cooling system C1 for a fuel cell 10 is heated through the heat generated at this time to warm-up the fuel cell. By such a configuration, the fuel cell can be warmed up without consuming the valuable hydrogen.
Abstract:
A method for warming up a fuel cell system comprising; a fuel cell which generates electric current due to an electrochemical reaction between hydrogen and oxygen, and which supplies the electric current to a load, an air supply pipe for supplying air to the fuel cell as an oxidant gas, an air exhaust pipe for discharging exhaust air from the fuel cell to an atmosphere, a compressor provided on either of air supply pipe and air exhaust pipe, which carries the air and a communication pipe which returns exhaust air to air supply pipe, and which communicates exhaust air pipe with air supply pipe to form a circulation cycle including compressor. The method of the present invention comprises: detecting a temperature of the fuel cell, and if the temperature of the fuel cell is lower than a first prescribed temperature, heating fuel cell by circulating the air, which has been heated by a heat generated due to adiabatic compression through compressor prior to supplying the electric current to the load from the fuel cell.
Abstract:
A gas-supplying apparatus for a fuel cell, which generates electric power due to an electrochemical reaction between oxygen and hydrogen, during which water is produced, and which has respective gas passages within the duel cell according to the present invention comprises a gas-sucking means which supplies supply gas of the fuel cell provided on the downstream of the gas passage in a gas-flowing direction; and a pressure controller which controls the pressure of the supply gas within the fuel cell, provided on the upstream of the gas passage, whereby the water produced during the course of said electrochemical reaction is discharged. When the cell voltage is decreased, the apparatus of the present invention recovers the cell voltage by making the negative pressure large to accelerate the discharge of the produced water with minimized power consumption.