摘要:
Method and structure for minimizing the downsides associated with microelectronic device processing adjacent porous dielectric materials are disclosed. In particular, chemical protocols are disclosed wherein porous dielectric materials may besealed by attaching coupling agents to the surfaces of pores. The coupling agents may form all or part of caps on reactive groups in the dielectric surface or may crosslink to seal pores in the dielectric.
摘要:
A method for forming a metal carbide layer begins with providing a substrate, an organometallic precursor material, at least one doping agent such as nitrogen, and a plasma such as a hydrogen plasma. The substrate is placed within a reaction chamber; and heated. A process cycle is then performed, where the process cycle includes pulsing the organometallic precursor material into the reaction chamber, pulsing the doping agent into the reaction chamber, and pulsing the plasma into the reaction chamber, such that the organometallic precursor material, the doping agent, and the plasma react at the surface of the substrate to form a metal carbide layer. The process cycles can be repeated and varied to form a graded metal carbide layer.
摘要:
The invention provides a layer of photosensitive material that may be directly patterned. The photosensitive material may then be decomposed to leave voids or air gaps in the layer. This may provide a low dielectric constant layer with reduced resistance capacitance delay characteristics.
摘要:
An interlayer dielectric may be exposed to a gas cluster ion beam to densify an upper layer of the interlayer dielectric. As a result, the upper layer of the interlayer dielectric may be densified without separate deposition steps and without the need for etch stops that may adversely affect the capacitance of the overall structure.
摘要:
A dielectric layer is made porous by treating the dielectric material after metal interconnects are formed in or through that layer. The porosity lowers the dielectric constant of the dielectric material. The dielectric material may be subjected to an electron beam or a sonication bath to create the pores. The structure has smooth sidewalls for metal interconnects extending through the dielectric layer.
摘要:
A method of forming an air gap intermetal layer dielectric (ILD) to reduce capacitive coupling between electrical conductors in proximity. The method entails forming first and second electrical conductors over a substrate, wherein the electrical conductors are laterally spaced apart by a gap. Then, forming a gap bridging dielectric layer that extends over the first electrical conductor, the gap, and the second electrical conductor. In order to form a bridge from one electrical conductor to the other electrical conductor, the gap bridging dielectric materials should have poor gap filling characteristics. This can be attained by selecting and/or modifying a dielectric material to have a sufficiently high molecular weight and/or surface tension characteristic such that the material does not substantially sink into the gap. An example of such a material is a spin-on-polymer with a surfactant and/or other additives.
摘要:
A thermally decomposable sacrificial material is deposited in a void or opening in a dielectric layer on a semiconductor substrate. The thermally decomposable sacrificial material may be removed without damaging or removing the dielectric layer. The thermally decomposable sacrificial material may be a combination of organic and inorganic materials, such as a hydrocarbon-siloxane polymer hybrid.
摘要:
A spirometer for in-home use by an individual with a respiratory disorder such as asthma measures the individual's current lung expiratory peak flow rate and provides a means to compare the current peak flow rate to a historical peak flow rate. The spirometer comprises an air flow channel having a terminus to receive air blown into it by the individual, a flow rate measuring chamber in communication with the air flow channel, and an adjustable zone graph in operable association with the flow rate measuring chamber. The zone graph has a series of zones to indicate the individuals current peak rate and compare it to the individual's previously determined peak flow rate as measured at a fully healthy period of time. A visual comparison of the peak flow rates can alert the individual to an on-coming asthma attack prior to the individual suffering from any asthma symptoms.