Abstract:
A highly accurate in-situ determination of the refractivity of an ambient atmosphere is disclosed, which determination is utilizable to enhance the accuracy of a quantity measurement. The system includes use of a refractometer exposed to an ambient atmosphere and having light directed thereto to form an optical interference fringe pattern having a dependence upon the refractivity of the ambient atmosphere. The fringe pattern is measured as a function of angle either by sequentially scanning a collimated input beam in angle while collecting and detecting the transmitted light, or by imaging (onto a multi-element detector) the angular exit space of the interferometer illuminated with a diverging input beam. The electrical output of the detector is processed to provide an output indicative of the index of refraction of the ambient atmosphere. The determined index of refraction is utilizable to enhance the accuracy of a quantity measurement, such as, for example, the distance measurement provided by a Fabry-Perot or displacement-measuring Michelson interferometer.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.
Abstract:
An optical system comprising a randomizer that has a plurality of randomly positioned scatterers for scattering and thereby randomizing light to generate a speckle pattern and a detector for detecting the speckle pattern to determine at least one property of the light and/or change in at least one property of the light.
Abstract:
A narrow band laser apparatus may include: a laser resonator; a pair of discharge electrodes; a power supply; a first wavelength measurement device configured to output a first measurement result; a second wavelength measurement device configured to output a second measurement result; and a control unit. The control unit calibrates the first measurement result, based on a difference between the second measurement result derived when the control unit controls the power supply to apply a pulsed voltage to the pair of discharge electrodes with a first repetition frequency and the second measurement result derived when the control unit controls the power supply to apply the pulsed voltage to the pair of discharge electrodes with a second repetition frequency, the second repetition frequency being higher than the first repetition frequency.
Abstract:
A method includes directing a portion of a laser beam output from a laser along a secondary beam path toward a detector, the secondary beam path being distinct from a main beam path of the laser beam; generating a bandwidth selective interference pattern of the laser beam on the detector; detecting, at the detector, a width of a fringe within the interference pattern to thereby measure measuring a bandwidth of the laser beam; and homogenizing the laser beam traveling along the secondary beam path prior to generation of the bandwidth selective interference pattern. The homogenizing includes diffusing the laser beam; and introducing a time dependent, position dependent, or both time and position dependent random modulation to the wavefront of the laser beam to reduce fluctuations in the detected fringe width and to reduce the influence of spatial coherence of the laser beam on the detected interference pattern.
Abstract:
A wavelength filter includes a solid material that is optically transparent and including a pair of planar surfaces substantially parallel to each other; and a supporting member that supports the solid material on a planar surface of the solid material other than the pair of planar surfaces, the supporting member having a rigidity higher than that of the solid material. The solid material is a birefringent material of which an optical axis makes a predetermined angle with respect to a normal to the pair of planar surfaces, and the wavelength filter selects light having a wavelength that is determined by an optical length between the pair of planar surfaces by resonating the light between the pair of planar surfaces.
Abstract:
A laser signal is monitored. The laser signal is forwarded to an etalon. Light transmitted through the etalon is detected. Light reflected from the etalon is detected. A ratio is calculated from the detected light transmitted through the etalon and the light reflected from the etalon.
Abstract:
Apparatus and methods are provided for measuring a selected optical behavior of a tunable opto-electric device by using the electrical characteristics of the opto-electronic device. The benefit of the present invention is the elimination or reduction in complexity of optical wavelength reference hardware that is currently required for wavelength referencing and locking. Accordingly, the present invention reduces the cost and complexity of the optical packaging of tunable opto-electronic telecommunication components. Furthermore, the present invention also significantly simplifies optical and electronic design of system level products with tunable opto-electronic devices.
Abstract:
A light frequency locker (10) able to accept a light beam (14) generated by a controllable light source (12) into a light diverter (16) and impart to it a transverse displacement characteristic which can be detected in a light detection unit (20) connected to a processor (22). The processor (22) then controls the light source (12). Optionally, a light diverger (18) may be provided to enhance angular resolution. The light diverter (16) and the light diverger (18) may either transmit or reflect the light. The light diverter (16) may particularly include a diffraction grating (116, 156), Fabry-Perot interferometer (216), multiple slit plate (316), or an acousto-optical unit (416).
Abstract:
A data distribution system (10) including an information card (12) and a reader (14). The information card (12) includes visible indicia (20) on its front and stripe zones (34) and a ring zone (36) on its back. The zones (34, 36) are suitable for magnetically recording data, and optional data identifiers. The reader (14) may be a linear reader (14a) or a rotary reader (14b), and optionally may act automatically in response to reading a data identifier. If the reader (14) is a rotary reader (14b) the information card (12) may be loaded into a cartridge (16) which is loaded into the rotary reader (14b).