Abstract:
The process for monitoring the curing reaction of a polymeric matrix, in which carbon nanotubes are dispersed whereby a composite material is formed, provides for: arranging an electric circuit comprising at least a generator of a substantially constant voltage, an amperemeter and two electrodes immersed into the composite material, whereby the composite material interposed between the electrodes closes the electrical circuit, and tracing the current intensity value measured by the amperemeter, which is correlated to the progress of the curing reaction of the polymeric matrix, so as to control said progress.
Abstract:
A process produces a block of polyolefin material with uniform crosslinking, which may be uniform between and within polymer chains in the polyolefin material. Steps include: providing an oven; placing the block into the oven; preheating the block to a uniform temperature above the melting point; further heating the block to a temperature at least 30 degrees Centigrade above the melting point; cooling the block to room temperature under an inert gas; and removing oxidized material from surface of the block. Optional steps include: subjecting the block to radiation before placing the block into the oven; removing the gases from the oven on a continuous or stepwise basis; controlling the purge gas flow out of the oven; and determining a heating time period for the block by subjecting control blocks to the same process and analyzing them after various heating times.
Abstract:
A homogeneously surface cross-linked water absorbent resin and a method for the production thereof are provided. The water absorbent material is formed of a surface cross-linked water absorbent resin resulting from granular irregularly pulverized shaped surface cross-linking the product of partial neutralization or whole neutralization of a water absorbent resin having acrylic acid or a metal salt thereof as a main component, which water absorbent material shows a metal atom concentration on the surface of the water absorbent material in the range of 0-10% within 0 second of polishing and 2-35% at 10 seconds value of polishing as determined by subjecting the water absorbent material to Ar ion discharge polishing under a voltage of 500 Å. The surface cross-linked water absorbent resin to be used herein can be produced by surface cross-linking a water absorbent resin having a specific particle diameter with a surface cross-linking agent having a water concentration in a specific range.
Abstract:
The present invention relates to a method for evaluating the crosslink degree of a vulcanized sample in real time during a vulcanization process or diagnosing the electrical properties of the sample after the completion of the vulcanization process, and then determining an optimal vulcanization time and an optimal content of each constituent gradient of a composition for vulcanization that optimize the properties of the composition according to the vulcanization conditions, for the sake of improving the properties of the vulcanized sample prepared from a polymer by vulcanization at a high temperature.The method for determining an optimal vulcanization time and an optimal content of each constituent gradient of a composition for vulcanization that optimize the properties of the composition according to the vulcanization conditions includes: (a) measuring an impedance spectrum in a specific frequency range in the individual vulcanization condition; (b) approximating the measured impedance spectrum to an equivalent circuit model consisting of resistance and capacitance components; (c) determining a polymer resistance Rp (i.e., a value obtained by subtracting a real part of the impedance measurement at a maximum frequency from a real part of the impedance measurement at a minimum frequency, or the magnitude of a real part of the semicircle in a Nyquist diagram) from the determined parameters; (d) determining, as an optimal end point of vulcanization, a time point at which the increasing rate of the polymer resistance Rp rapidly slows down; and (e) determining the optimal content of each constituent ingredient of the composition for vulcanization when the polymer resistance Rp of the sample completely vulcanized is at its minimum.
Abstract:
A method of curing powder coatings comprising the steps 1. application of the powder coating onto the substrate surface, 2. curing of the coating by means of NIR radiation in a wavelength range of 760 to 1500 nm, wherein the course of the curing is tracked by recording the thermal radiation given off by the coated substrate during curing.
Abstract:
The present invention provides an indicator for determining when curable coatings have crosslinked or cured thereby permitting the applier to know what part of the floor may be used without affecting the surface and what part of the floor is still in the curing process and may not be disturbed. The invention involves the incorporation in the liquid materials applied to the floor, of a dye or pigment which is visible to the naked eye when the coating is in the liquid state and significantly less visible after the coating has cured. Almost any dye or pigment may be used which is compatible with the various coatings which may be employed in the present invention; provided however, the amount of dye or pigment added is sufficient to be visible when the material is liquid but not so much to prevent the color intensity from being greatly diminished upon curing.
Abstract:
A method and apparatus (10) for detection of the degree of cure of a polymer in situ and non-invasively. The method and apparatus uses a solvatochromic probe molecule which upon curing produces a shift in the fluorescence emission spectrum as compared to a liquid polymerizable composition. The method and apparatus is particularly adapted for poly(vinyl) polymers. Preferred solvatochromic probe molecules are oxazones and pyrene.
Abstract:
The present invention provides novel hydrosilation-curable compositions, the cure of which can be monitored visually, comprising: (1) an ethylenic compound; (2) a compound containing silicon-bonded-hydrogen groups; (3) a hydrosilation catalyst; and (4) one or more cure-indicating dyes with light absorption in the visible spectrum that exhibit a color change in the presence of a silicon-bonded-hydrogen compound and a precious metal hydrosilation catalyst. The cure-indicating dye provides the composition with an initial pre-cure color and a different post-cure color. As a result of this change in color, the state of cure of the composition can be visually monitored.
Abstract:
A FILM OF POLYISOPROPENE IS COATED ON THE SURFACE OF A VULCANIZABLE RUBBER ARTICLE, THE COATED ARTICLE IS VULCANIZED, AND THE FLUORESCENCE OF THE VULCANIZED ARTICLE UNDER EXPOSURE TO ULTRAVIOLET LIGHT IS EVALUATED AS A MEASURE OF THE DEGREE OF VULCANIZATION OF THE ARTICLE.
Abstract:
The present invention discloses a process for providing a cross-linked composition, the process comprising the steps of (a) providing an ethylene-α-olefin plastomer having—a density of from 850 kg/m3 to 900 kg/m3; and—an melt flow rate (ISO 1133, 2.16 kg, 190° C.) of 0.3 to 50 g/10 min; (b) grafting the ethylene-α-olefin plastomer with silane crosslinker such that the content of silane crosslinker is in the range of 0.1 to 10.0 wt. % with respect to the grafted ethylene-α-olefin plastomer; (c) contacting said grafted ethylene-α-olefin plastomer with 2 to 8 wt. % of a tin-free silane crosslinking catalyst with respect to the resulting mixture of grafted ethylene-α-olefin plastomer and tin-freesilane crosslinking catalyst, wherein said tin-free catalyst comprises a Brönsted acid at 23° C. and 50% relative humidity for at least 15 minutes thus forming a cross-linked composition, wherein gel content of said cross-linked composition after 15 min is at least 60%.