Fluid vessel with removable and reversible filtration unit

    公开(公告)号:US09725333B2

    公开(公告)日:2017-08-08

    申请号:US14308758

    申请日:2014-06-19

    摘要: A fluid storage and dispensing assembly includes a fluid chamber having at least one side wall extending between an upper end and a closed lower end thereby defining a reservoir. A lid connectable proximate the chamber upper end has a first surface and an opposite second surface and defines a fluid inlet connecting the first and second surfaces. The fluid inlet defines an axis and includes a first fluid sealing member. A fluid filtration unit having a first end configured for removable fluid tight attachment to the lid at the second surface and a second end is provided with a filtration channel defined therebetween. The second end defines a filter outlet, and a unit of filter media is positioned between the first and second ends. The filtration outlet is in fluid communication with the fluid inlet when the first end is attached to the lid unit, wherein the first sealing member is configured for releasable attachment in a fluid tight seal with a head of a pressurized fluid source when engaged such that the pressure from the fluid source forces fluid from the source through the filter media and from the filtration outlet into the reservoir.

    Micro flow filtration system and flow filtration method for a fluid sample

    公开(公告)号:US09700845B2

    公开(公告)日:2017-07-11

    申请号:US14386092

    申请日:2013-03-25

    摘要: A flow filtration system (1) for concentration of components contained in a fluid sample comprises a fluid channel (2) being formed by two conduits (4, 5) allowing a bidirectional flow of the fluid sample through the fluid channel (2), a tangential flow filtration module (3) and at least two pairs (8, 9) of piston pumps (6) each having two piston pumps (6), wherein the piston pumps (6) having a piston swept volume forming a reservoir being able to contain the fluid for volumes of up to 100 ml. The tangential flow filtration module (3) is located in the fluid channel (2) so that a fluid flowing through the channel (2) passes through the filtration module (3). At each end (10, 11) of the channel (2) one piston pump (6) of each pair (8, 9) of piston pumps (6) is located in such a manner that the piston pumps are fluidically connected in parallel. The system (1) is arranged and adapted such that during the concentration process at least for a predetermined period of time only one of the pairs (8, 9) of piston pumps (6) is used to drive the fluid through the tangential flow filtration module (3).