Abstract:
A membrane assembly includes a membrane film, and a plurality of tensile support members. The membrane film is configured to transfer heat and moisture between a liquid and air flowing through a LAMEE. The tensile support members are connected to the membrane or a substrate connected to the membrane. And, the tensile support members are in spaced relation to 5 one another and oriented perpendicular to a direction of flow of liquid through the LAMEE.
Abstract:
The instant application relates to a high pressure spiral-type hollow fiber membrane fabric-containing module or contactor, comprising: a high pressure module housing or vessel; a pair of end caps; liquid end ports and at least one gas port; and at least one membrane cartridge, wherein each module or contactor has one or more shims, spacers, protrusions, and/or the like on a cartridge shell exterior, on a module housing interior, on the cartridge shell exterior and on the module housing interior, and/or between the shell and the housing.
Abstract:
A cartridge type hollow-fiber membrane module of the present invention includes: a housing; a plurality of hollow fiber membranes housed in the housing; a first potting part which bundles first ends of the hollow fiber membranes while keeping the first ends open; a second potting part which bundles second ends of the hollow fiber membranes while keeping the second ends sealed; a fixing part which detachably fixes the first potting part to the housing; a sealing part which liquid-tightly seals a space between the first potting part and the housing; and a holding part which holds the second potting part so that the second potting part is detachable from the housing and so that liquids can pass through a space between the second potting part and the housing.
Abstract:
A submerged membrane separator includes: a plurality of membrane cartridges arranged at predetermined spaces; a flow generating device for generating flows in one direction along the membrane surfaces of the membrane cartridges; and wall members on both sides of a channel of the flow in the one direction formed between the membrane cartridges adjacent to each other. The membrane cartridges can be attached and detached from another direction substantially orthogonal to the flows in the one direction and substantially orthogonal to the arrangement direction of the membrane cartridges.
Abstract:
Apparatus, and components for use in apparatus, for changing the concentration of a selected gas in a liquid, for example for degassing liquids. In one apparatus, the apparatus has a flow channel (a) through which the liquid is passed, and (b) which comprises a wall comprising a planar separation membrane, and (c) has a height of 0.00025-0.01 and an aspect ratio (width to height) of at least 25:1. One component, which can be used to support a separation membrane, comprises (a) an inner selection plate surface which comprises (i) a selection plate base and (ii) selection plate elements which (a) extend from the base, (b) are separated by intercommunicating selection areas, and (c) have outer surfaces remote from the selection plate base. Another component is a planar separation membrane which comprises (a) a membrane transmission section, and (b) a membrane peripheral member which surrounds the membrane transmission section and which includes location features which facilitate the location of the membrane at a desired position relative to another component.
Abstract:
The invention concerns a filtration device comprising a manifold providing fluid connection and mechanical connection comprising a clamping plate movably mounted relative to the manifold and adapted to compress at least one cassette against the manifold, means for driving and guiding the clamping plate comprising a rod extending between the manifold and the plate, an actuator provided with a body and a member moveable relative to the body, which member is adapted to move through a predetermined travel between an extended position and a retracted position, the body being carried by the manifold, and the member carrying the rod and driving the plate via the rod to a clamped position in which the member is in an intermediate retracted position in which it has moved through a shorter travel than the predetermined travel relative to its extended position.
Abstract:
A portable water conditioning system is provided that includes an incoming water inlet; a reverse osmosis stage in fluid communication with the incoming water inlet, the reverse osmosis stage having a permeate outlet and a concentrate outlet; a diversion device having a diversion valve, the diversion valve placing the concentrate outlet in fluid communication with a waste water outlet; a deionizing stage in fluid communication with a pure water outlet; a bypass valve configured to selectively place the permeate outlet in fluid communication with one or more of the waste water outlet, the deionizing stage, and the pure water outlet; and a controller configured to control the diversion device and the bypass valve to provide water at the pure water outlet of a desired condition.
Abstract:
A container for liquids is provided, in which pressurization of the container is used to force the liquid through one or more membranes to an output. The membranes are disposed across substantially an entire length of the container, and pass liquid in preference to the air. As a result, the liquid may be extracted from the container in any orientation. A particular use for this kind of container is as a portable water bottle containing a filter.
Abstract:
The invention concerns a filtration device comprising a manifold providing fluid connection and mechanical connection comprising a clamping plate movably mounted relative to the manifold and adapted to compress at least one cassette against the manifold, means for driving and guiding the clamping plate comprising a rod extending between the manifold and the plate, an actuator provided with a body and a member moveable relative to the body, which member is adapted to move through a predetermined travel between an extended position and a retracted position, the body being carried by the manifold, and the member carrying the rod and driving the plate via the rod to a clamped position in which the member is in an intermediate retracted position in which it has moved through a shorter travel than the predetermined travel relative to its extended position.
Abstract:
A spiral separation membrane element (1A) includes: a wound body (3) including a separation membrane; a core tube (2) that penetrates the wound body (3) along the central axis of the wound body (3); and a joining portion (4) that joins the wound body (3) to the core tube (2) at at least one end face (3a) of the wound body (3). The joining portion (4) has a holding portion (41) disposed inwardly of the end face (3a) of the wound body (3) and an extending portion (42) formed integrally with the holding portion (41). The spiral separation membrane element (1A) further includes a restraining member (5A) that secures the extending portion (42) to the core tube (2).