Abstract:
Methods, systems, and devices for wireless communications at a user equipment (UE) are described. Aspects of the described techniques may include the user equipment measuring signal aspects for a plurality of respective receive beams for receiving communications associated with a synchronization signal block transmitted by a base station on a transmit beam. From the measured signal aspects, the UE may determine that a receive beam from the plurality of receive beams is a preferred beam for receipt of communications from the base station transmitted on the transmit beam. With the determined preferred beam, the UE may initiate a beam-sweeping procedure to re-measure the plurality of UE receive beams, where the UE measures the first UE receive beam before measuring others of the plurality of UE receive beams.
Abstract:
A user equipment (UE) may monitor multiple beam pair links (BPLs) including a first BPL currently used by the UE to communicate with a network node (e.g., a base station), and a second BPL. The first BPL comprises a first network beam and a first UE beam, and the second BPL comprises a second network beam and a second UE beam. The UE may decide to switch beams from using the first BPL to using the second BPL based on signaling from the network node or autonomously. When the beam switch is made, the UE switches uplink (UL) transmission from over the first UE beam to over the second UE beam. After the beam switch is made, the UE transmits in the UL over the second UE beam using UL timing adjusted based on the first and second propagation delays.
Abstract:
Systems, methods, and apparatuses for sounding reference signal (SRS) management in carrier aggregation (CA) are described. A user equipment (UE) may be scheduled for overlapping (e.g., concurrent) transmissions of SRS and uplink control or data on different cells of a CA configuration. In some cases, the SRS transmission may be dropped (e.g., the UE may refrain from transmitting a scheduled SRS). While in some cases, the UE may transmit both SRS and another uplink message in overlapping time intervals on different cells (e.g., SRS may be transmitted concurrently with another uplink message). A determination of whether to transmit or drop SRS may be based on whether the different cells have different cyclic prefix (CP) lengths or on whether the SRS is scheduled to be transmitted in a special subframe of a time division duplexing (TDD) configuration, for example.
Abstract:
Systems and methods for antenna selection in a wireless terminal with two radios are provided. Signals received using first and second antennas are demodulated by first and second modems according to first and second protocols. A receive path between the second antenna and the second modem can be controlled to receive signals according to the first protocol. A performance measure of demodulating, according to the first protocol, a signal received using the second antenna is determined. The performance measure may be determined using a mirror module in the second modem or using a search module in the first modem. The wireless terminal switches antennas so that the first modem demodulates a signal received using the second antenna, if the performance measure for using the second antenna is such that the switch would improve performance of the first modem.
Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching. In one embodiment, a wireless communication apparatus is provided. The wireless communication apparatus includes a plurality of antennas including a first antenna and a second antenna. The wireless communication apparatus further includes at least one receive circuit including a first receive circuit. The wireless communication apparatus further includes a controller configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna if one or more performance characteristics of the first antenna are below a threshold in one or more measurement cycles, the one or more measurement cycles including a wake-up cycle outside of a predetermined wake-up cycle. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Exemplary embodiments are related to antenna tuners. A device may include a transceiver configured to operate in a frequency division duplex (FDD) network. The device may also include an antenna tuner coupled to the transceiver. Further, the device includes a processor configured to tune the antenna tuner for a receive frequency if the device is operating in receive mode and tune the antenna tuner for a transmit frequency if the device is operating in a transmit and receive mode.
Abstract:
A method for antenna switching is described. The method includes transmitting using a first antenna. The method also includes determining that a trigger occurs to switch to transmitting using a second antenna. The trigger is based on a combination of a physical uplink shared channel (PUSCH) maximum transmit power level (MTPL) counter and a physical uplink control channel (PUCCH) MTPL counter. The method further includes switching to transmitting using the second antenna based on the determination.
Abstract:
A wireless device includes: a first radio and first transceiver configured to transmit and receive according to a first radio access technology; a second radio and second transceiver configured to transmit and receive according to a second radio access technology; a first antenna and a second antenna connected to the first radio and the second radio; a switch; and a control unit configured to control the switch to configure connections of the first and second antennas to the first and second radios. The control unit is configured to control the switch to disconnect the second radio from the second antenna in response to a receiving, by the second radio through the second antenna, a signal that is below a predetermined threshold, and to connect the second radio to the first antenna during a wakeup period of the second radio.
Abstract:
A method for antenna switching is described. The method includes transmitting using a first antenna. The method also includes determining that a trigger occurs to switch to transmitting using a second antenna. The trigger is based on a combination of a physical uplink shared channel (PUSCH) maximum transmit power level (MTPL) counter and a physical uplink control channel (PUCCH) MTPL counter. The method further includes switching to transmitting using the second antenna based on the determination.
Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching for simultaneous communication. One apparatus embodiment includes a plurality of antennas including a first antenna, a second antenna, and a third antenna. The wireless communication apparatus further includes a plurality of receive circuits including a first receive circuit, at least two of the plurality of receive circuits each configured to simultaneously receive, with respect to the other, wireless communications from a different one of at least two networks relating to different radio access technologies. The wireless communication apparatus further includes a controller configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna based on one or more performance characteristics of at least one of the first antenna and the second antenna. Other aspects, embodiments, and features are also claimed and described.