Abstract:
A plasma cell for controlling convection includes a transmission element configured to receive illumination from an illumination source in order to generate a plasma within a plasma generation region of the volume of gas. The transmission element of the plasma cell is at least partially transparent to at least a portion of the illumination generated by the illumination source and at least a portion of broadband radiation emitted by the plasma. The plasma cell also includes one or more gas return channels formed within the transmission element for transferring gas from a region above the plasma generation region to a region below the plasma generation region.
Abstract:
An open plasma lamp includes a cavity section. A gas input and gas output of the cavity section are arranged to flow gas through the cavity section. The plasma lamp also includes a gas supply assembly fluidically coupled to the gas input of the cavity section and configured to supply gas to an internal volume of the cavity section. The plasma lamp also includes a nozzle assembly fluidically coupled to the gas output of the cavity section. The nozzle assembly and cavity section are arranged such that a volume of the gas receives pumping illumination from a pump source, where a sustained plasma emits broadband radiation. The nozzle assembly is configured to establish a convective gas flow from within the cavity section to a region external to the cavity section such that a portion of the sustained plasma is removed from the cavity section by the gas flow.
Abstract:
A laser-sustained plasma light source for transverse plasma pumping includes a pump source configured to generate pumping illumination, one or more illumination optical elements and a gas containment structure configured to contain a volume of gas. The one or more illumination optical elements are configured to sustain a plasma within the volume of gas of the gas containment structure by directing pump illumination along a pump path to one or more focal spots within the volume of gas. The one or more collection optical elements are configured to collect broadband radiation emitted by the plasma along a collection path. Further, the illumination optical elements are configured to define the pump path such that pump illumination impinges the plasma along a direction transverse to a direction of propagation of the emitted broadband light of the collection path such that the pump illumination is substantially decoupled from the emitted broadband radiation.
Abstract:
A refillable plasma cell for use in a laser-sustained plasma light source includes a plasma bulb, the bulb being formed from a glass material substantially transparent to a selected wavelength of radiation, and a gas port assembly, the gas port assembly being operably connected to the bulb and disposed at a first portion of the gas bulb, wherein the bulb is configured to selectively receive a gas from a gas source via the gas port assembly.
Abstract:
A spectrometer apparatus is disclosed. The apparatus may include light source and the light source may include a chamber for sustaining a plasma within the internal volume of the chamber. The apparatus may also include a spectrometer cavity and a windowless entrance slit. The windowless entrance slit may fluidically and optically couple the spectrometer cavity and the internal volume of the chamber of the light source. Further, the apparatus may include a diffractive element disposed within the spectrometer cavity and a window positioned at an opposite end of the spectrometer cavity from the windowless slit. The apparatus may also include a camera and a spectrometer.
Abstract:
A system for generating broadband radiation is disclosed. The system includes a target material source configured to deliver one or more of a liquid or solid state target material to a plasma-forming region of a chamber. The system further includes a pump source configured to generate pump radiation to excite the target material in the plasma forming region of the chamber to generate broadband radiation. The system is further configured to transmit at least a portion of the broadband radiation generated in the plasma-forming region of the chamber out of the chamber through a windowless aperture.
Abstract:
A system for pumping laser sustained plasma and enhancing one or more selected wavelengths of output illumination generated by the laser sustained plasma is disclosed. In embodiments, the system includes one or more pump modules configured to generate pump illumination for the laser sustained plasma and one or more enhancing illumination sources configured to generate enhancing illumination at one or more selected wavelengths. The pump illumination may be directed along one or more pump illumination paths that are non-collinear to an output illumination path of the output illumination. The enhancing illumination may be directed along an illumination path that is collinear to the output illumination path of the output illumination so that the enhancing illumination is combined with the output illumination, thereby enhancing the output illumination at the one or more selected wavelengths.
Abstract:
An imaging system utilizing atomic atoms is provided. The system may include a neutral atom source configured to generate a beam of neutral atoms. The system may also include an ionizer configured to collect neutral atoms scattered from the surface of a sample. The ionizer may also be configured to ionize the collected neutral atoms. The system may also include a selector configured to receive ions from the ionizer and selectively filter received ions. The system may also include one or more optical elements configured to direct selected ions to a detector. The detector may be configured to generate one or more images of the surface of the sample based on the received ions.
Abstract:
A laser-sustained plasma light source includes a plasma lamp configured to contain a volume of gas and receive illumination from a pump laser in order to generate a plasma. The plasma lamp includes one or more transparent portions transparent to illumination from the pump laser and at least a portion of the broadband radiation emitted by the plasma. The one or more transparent portions are formed from a transparent material having elevated hydroxide content above 700 ppm.
Abstract:
A system for generating pump illumination for laser sustained plasma (LSP) is disclosed. In embodiments, the system includes an illumination source configured to output illumination having a first spectral frequency and an optical frequency converter. The optical frequency converter can be configured to receive the illumination having the first spectral frequency from the illumination source and configured to output pump illumination having a second spectral frequency that is different from the first spectral frequency.