Abstract:
A main pole layer having at least a leading taper and trimmed pole tip portion is described. The leading taper increases head field up to ≧15000 Oe even for narrow track widths approaching 50 nm. For MAMR applications, a STO and trailing shield are sequentially formed on a trailing pole tip side. Furthermore, full side shields may be added to reduce fringing field. A preferred embodiment includes both of a leading taper and trailing taper at the pole tip where leading taper angle is between 20° and 60° and trailing taper angle is from 10° to 45°. A method is provided for forming various embodiments of the present invention. A key feature is that milling depth at an effective neck height distance is greater than or equal to the pole tip thickness. A self aligned STO may be formed by the same ion milling step that defines track width.
Abstract:
Plasma nitridation, in place of plasma oxidation, is used for the formation of a CCP layer. Al, Mg, Hf, etc. all form insulating nitrides under these conditions. Maintaining the structure at a temperature of at least 150° C. during plasma nitridation and/or performing post annealing at a temperature of 220° C. or higher, ensures that no copper nitride can form. Additionally, unintended oxidation by molecular oxygen of the exposed magnetic layers (mainly the pinned and free layers) is also avoided
Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
A read head includes a permanent magnet (PM) layer formed up to 100 nm behind a free layer where PM layer magnetization may be initialized in a direction that adjusts free layer (FL) bias point, and shifts sensor asymmetry (Asym) closer to 0% for individual heads at slider or Head Gimbal Assembly level to provide a significant improvement in device yield. Asym is adjusted using different initialization schemes and initialization directions. With individual heads, initialization direction is selected based on a prior measurement of asymmetry. The PM layer is CoPt or CoCrPt and has coercivity from 500 Oersted to 1000 Oersted. The PM layer may have a width equal to the FL, or a width equal to the cross-track distance between outer sides of the longitudinal bias layers. In another embodiment, the PM layer adjoins a backside of the top shield.
Abstract:
The use of supermalloy-like materials such as NiFeMe where Me is one or more of Mo, Cr, and Cu for the side and top shields of a magnetic bit sensor is shown to provide better shielding protection from stray fields because of their extremely high permeability. Moreover, the side shield may comprise a stack in which a Ni, Fe, Co, FeNi, CoFe, or FeCo is sandwiched between two NiFeMe layers to enhance the bias field on an adjacent free layer. Including NiFeMe in a side shield results in an increase in readback amplitude under the same asymmetric sigma. For these sensors, the signal to noise ratio was higher and the bit error rate was lower than with conventional materials in the side shield. A method is disclosed for forming a magnetic bit sensor having supermalloy-like materials in the side shields.
Abstract:
A seed layer stack with a smooth top surface having a peak to peak film thickness variation of about 0.5 nm is formed by sputter depositing a second seed layer on a first seed layer that is Mg, MgN, or an alloy thereof where the second seed layer has a bond energy substantially greater than that of the first seed layer. The second seed layer may be Ta or NiCr. In some embodiments, an uppermost seed layer that is one or both of Ru and Cu is deposited on the second seed layer. Higher coercivity (Hc) and perpendicular magnetic anisotropy (Hk) is observed in an overlying ferromagnetic layer than when a prior art seed layer stack is employed. The first seed layer has a thickness from 2 to 20 Angstroms and has a resputtering rate about 2 to 40 times that of the second seed layer.
Abstract:
A hard magnet stabilization scheme is disclosed for a top shield and junction shields for double or triple dimension magnetic reader structures. In one design, the hard magnet (HM) adjoins a top or bottom surface of all or part of a shield domain such that the HM is recessed from the air bearing surface to satisfy reader-to-reader spacing requirements and stabilizes a closed loop magnetization in the top shield. Alternatively, the HM may replace a shield domain. The top shield may have various shapes including a ring shape in which the HM stabilizes a vortex magnetization. In a whole shield coupling design, the HM contacts all of the top shield bottom surface except over the sensor and junction shield. HM magnetization is set or reset from room temperature to 100° C. to maintain a desired magnetization direction in the top shield, junction shield, and free layer in the sensor.
Abstract:
A process flow is disclosed for forming a MR sensor having an antiferromagnetic (AFM) layer recessed behind a bottom shield to reduce reader shield spacing and improve pin related noise. An AP2/AFM coupling layer/AP1 stack that extends from an air bearing surface to the MR sensor backside is formed above the AFM layer. The AP2 layer is pinned by the AFM layer, and the AP1 layer serves as a reference layer to an overlying free layer during a read operation. The AP1 and AP2 layers have improved resistance to magnetization flipping because back portions thereof have a full cross-track width “w” between MR sensor sides thereby enabling greater pinning strength from the AFM layer. Front portions of the AP1/AP2 layers lie under the free layer and have a track width less than “w”. The bottom shield may have an anti-ferromagnetic coupling structure.
Abstract:
A seed layer stack with a smooth top surface having a peak to peak film thickness variation of about 0.5 nm is formed by sputter depositing a second seed layer on a first seed layer that is Mg, MgN, or an alloy thereof where the second seed layer has a bond energy substantially greater than that of the first seed layer. The second seed layer may be Ta or NiCr. In some embodiments, an uppermost seed layer that is one or both of Ru and Cu is deposited on the second seed layer. Higher coercivity (Hc) and perpendicular magnetic anisotropy (Hk) is observed in an overlying ferromagnetic layer than when a prior art seed layer stack is employed. The first seed layer has a thickness from 2 to 20 Angstroms and has a resputtering rate about 2 to 40 times that of the second seed layer.
Abstract:
A method of forming a magnetoresistive (MR) sensor with a composite tunnel barrier comprised primarily of magnesium oxynitride and having a MR ratio of at least 70%, resistance x area (RA) product