Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
Abstract:
A read head includes a permanent magnet (PM) layer formed up to 100 nm behind a free layer where PM layer magnetization may be initialized in a direction that adjusts free layer (FL) bias point, and shifts sensor asymmetry (Asym) closer to 0% for individual heads at slider or Head Gimbal Assembly level to provide a significant improvement in device yield. Asym is adjusted using different initialization schemes and initialization directions. With individual heads, initialization direction is selected based on a prior measurement of asymmetry. The PM layer is CoPt or CoCrPt and has coercivity from 500 Oersted to 1000 Oersted. The PM layer may have a width equal to the FL, or a width equal to the cross-track distance between outer sides of the longitudinal bias layers. In another embodiment, the PM layer adjoins a backside of the top shield.
Abstract:
A method of forming a spin torque assisted magnetic recording writer is disclosed wherein a spin flipping (STO) device is recessed from an air bearing surface. The STO device has a middle flux guiding layer with a magnetization that flips to a direction anti-parallel to the write gap field when a current of sufficient magnitude is applied from the trailing shield towards the main pole (MP) thereby increasing reluctance in the write gap to enhance writability. A STO stack is deposited and patterned to define a cross-track width on the MP tapered trailing side. Thereafter, the STO stack is patterned to define a STO device with a front side recessed from the air bearing surface, and a backside. A write gap is deposited surrounding the STO device, and has a thickness greater than or ≤ to STO thickness to enable design flexibility. Then, first and second trailing shields are formed.
Abstract:
A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative λ to offset the positive λ from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ≧2 or (CoB/CoFe)m/CoB where m is ≧1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for λ (
Abstract:
A MR sensor is disclosed with an antiferromagnetic (AFM) layer recessed behind a first stack of layers including a free layer and non-magnetic spacer to reduce reader shield spacing and enable increased areal density. The AFM layer may be formed on a first pinned layer in the first stack that is partially embedded in a second pinned layer having a front portion at an air bearing surface (ABS) to improve pinning strength and avoid a morphology effect. In another embodiment, the AFM layer is embedded in a bottom shield and surrounds the sidewalls and back side of an overlying free layer in the sensor stack to reduce reader shield spacing. Pinning strength is improved because of increased contact between the AFM layer and a pinned layer. The free layer is aligned above a bottom shield center section.
Abstract:
A perpendicular magnetic recording (PMR) head is fabricated with main pole and a trailing edge shield antiferromagnetically coupled across a write gap by either having the write gap layer formed as a synthetic antiferromagnetic tri-layer (SAF) or formed as a monolithic layer of antiferromagnetic material. The coupling improves the write performance of the writer by enhancing the perpendicular component of the write field and its gradient. Methods of fabricating the writer are provided.
Abstract:
A TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, CoBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. One embodiment is represented by (NBC/BC)n where n≧2. A second embodiment is represented by (NBC/BC)n/NBC where n≧1. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is
Abstract:
A wrap around shield structure is disclosed for biasing a free layer in a sensor and includes a bottom shield, side shields, and top shield in which each shield element comprises a high moment layer with a magnetization saturation greater than that of Ni70Fe30. The high moment layers provide a better micro read width performance. Side shield structure includes a stack of antiferromagnetically (AFM) coupled magnetic layers on a second high moment layer. A first (lower) magnetic layer in each side shield is ferromagnetically coupled to the second high moment layer, and to a first high moment layer in the bottom shield. A third (upper) magnetic layer in each side shield is ferromagnetically coupled to a third high moment layer in the top shield for improved stabilization. Sensor sidewalls may terminate at a top surface of a reference layer to decrease reader shield spacing.
Abstract:
A wrap around shield structure is disclosed for biasing a free layer in a sensor and includes a bottom shield, side shields, and top shield in which each shield element comprises a high moment layer with a magnetization saturation greater than that of Ni70Fe30. The high moment layers provide a better micro read width performance. Side shield structure includes a stack of antiferromagnetically (AFM) coupled magnetic layers on a second high moment layer. A first (lower) magnetic layer in each side shield is ferromagnetically coupled to the second high moment layer, and to a first high moment layer in the bottom shield. A third (upper) magnetic layer in each side shield is ferromagnetically coupled to a third high moment layer in the top shield for improved stabilization. Sensor sidewalls may terminate at a top surface of a reference layer to decrease reader shield spacing.