Abstract:
A modulation pattern calculation apparatus includes an iterative Fourier transform unit, a filtering process unit, and a modulation pattern calculation unit. The iterative Fourier transform unit performs a Fourier transform on a waveform function including an intensity spectrum function and a phase spectrum function, performs a replacement of a temporal intensity waveform function based on a desired waveform after the Fourier transform and then performs an inverse Fourier transform, and performs a replacement to constrain the phase spectrum function after the inverse Fourier transform. The filtering process unit performs a filtering process of cutting a part exceeding a cutoff intensity for each wavelength, on the intensity spectrum function in a frequency domain.
Abstract:
A wavelength conversion element includes a crystal having a periodically poled structure in which polarization is inverted with an inversion period Λ along a z-axis which is an input axis of a light pulse. The wavelength conversion element is configured to generate an output light pulse converted to have an output frequency f(x) corresponding to the inversion period Λ(x) at each position x by change of the inversion period Λ according to the position x, and when a target frequency linearly changing with the position x is set to fT(x)=b+ax, a frequency width of the output frequency is set to δf(x), and the output frequency is set to f(x)=fT(x)+α(x), the output frequency is set to coincide with the target frequency within a range satisfying a condition |α(x)|≦δf(x).
Abstract:
A microscope apparatus includes an objective lens; a light source for outputting light with which a biological sample is irradiated via the objective lens; a shape acquisition unit for acquiring information on at least one of a surface shape of the biological sample and a structure directly under the surface of the biological sample; a hologram generation unit for generating aberration correction hologram data for correcting an aberration caused by the at least one on the basis of the information acquired by the shape acquisition unit; a spatial light modulator to which a hologram based on the aberration correction hologram data is presented and for modulating the light output from the light source; a photodetector for detecting an intensity of light generated in the biological sample and outputs a detection signal.
Abstract:
A photostimulation apparatus includes an objective lens arranged to face a biological object, a light source configured to output light to be radiated toward the biological object via the objective lens, a shape acquisition unit configured to acquire information about a shape with a refractive index difference in the biological object, a hologram generation unit configured to generate aberration correction hologram data for correcting aberrations due to the shape with the refractive index difference on the basis of the information acquired by the shape acquisition unit, and a spatial light modulator on which a hologram based on the aberration correction hologram data is presented and which modulates the light output from the light source.
Abstract:
A control apparatus includes a lens, an SLM presenting a modulation pattern on a modulation plane and outputting modulated light L2 for forming light spots P1 and P2 on a pupil plane of the lens, an imaging device imaging a fringe pattern image formed on a focal plane of the lens and generating image data Da indicating the fringe pattern image, a calculation unit calculating at least one kind of parameter among an intensity amplitude, a phase shift amount, and an intensity average from the image data Da, an analysis unit obtaining a deviation in relative positions of an optical axis of the lens and a reference coordinate of the modulation plane based on the parameter, and a changing unit changing an origin position of the reference coordinate so that the deviation in the relative positions is decreased.
Abstract:
A total internal reflection light illumination apparatus includes a light source providing illumination light L1, a spatial light modulator inputting the illumination light L1 and converging and outputting the illumination light L1 by presenting a lens pattern, an objective lens illuminating an object substrate with illumination light L2 converged and output by the spatial light modulator, and a calculation unit providing, to the spatial light modulator, the lens pattern corresponding to at least one of a desired polarization state, desired penetration length, desired shape, and desired light intensity of the evanescent light L3. The lens pattern converges the illumination light L2 on a pupil plane of the objective lens.