Abstract:
According to the teachings presented herein, each base station in a group of base stations is linked to an associated terminal as a receiver-transmitter pair. These receiver-transmitter pairs reuse channelization resources, such that each terminal represents a source of other-cell interference (also referred to as multi-user interference or MUI) for other terminals in neighboring cells that are reusing all or some of the same channelization resources. Accordingly, the base stations implement a gaming-based algorithm to mitigate MUI for the multiple-input-multiple-output (MIMO) uplink signals received from their associated terminals. More particularly, each base station functions as a player in a game, in which the allowed gaming action is the selection of the precoding matrix to be used for MIMO uplink transmissions to the base station from an associated terminal.
Abstract:
Inter-CoMP cell interference is reduced by “extending” at least one CoMP cell to include UEs served by a neighboring CoMP cell in the extended CoMP cell's transmission calculations, so as to minimize interference to the UEs served by other CoMP cells. Each UE in a border sub-cell identifies neighboring CoMP cells from which it receives interference in excess of a threshold value, and includes the interfering CoMP cells in a close-neighbor set. The close-neighbor set is transmitted to the UE's serving CoMP cell controller. When downlink transmissions are scheduled to the target UE, the controller notifies the neighboring CoMP cells in the close-neighbor set, identifying the target UE. Those CoMP cells then use information about the channel conditions from their transmit antennas to the target UE receive antennas to compute transmissions to UEs they serve, with the constraint that interference to the target UE is below a predetermined level.
Abstract:
A UE in a wireless communication network transmits succinct, direct channel state information to the network, enabling coordinated multipoint calculations such as joint processing, without substantially increasing uplink overhead. The UE receives and processes reference symbols over a set of non-uniformly spaced sub-carriers, selected according to a scheme synchronized to the network. The frequency response for each selected sub-carrier is estimated conventionally, and the results quantized and transmitted to the network on an uplink control channel. The non-uniform sub-carrier selection may be synchronized to the network in a variety of ways.
Abstract:
In a wireless communication network using point-to-point or point-to-multipoint communications, this disclosure teaches the use of combined packets for retransmission and corresponding soft value processing at a receiver, wherein combined packets are formed as the logical combination of two or more previously transmitted packets and allow the receiver to use a single combined packet to correct one or more failed packets. For example, with the combined packet retransmission and corresponding soft value receiver processing as taught herein, a given receiver can use a given combined packet to correct bit errors in all (failed) packets comprising the combined packet as long as the bit errors in a failed packet do not overlap (or align) with bit errors in the other failed packets comprising the combined packet.
Abstract:
According to a method and apparatus taught herein, a network node includes a receiver circuit that determines soft values for received packets corresponding to the information bit groups associated with network coding operations, where the soft values are determined for each information bit group based on joint probabilities of the information bits within the information bit group. For example, first soft values are determined for the information bit groups in a first (received) constituent packet and second soft values are likewise determined for the information bit groups in a network-coded (received) packet that depends on the first constituent packet and a second constituent packet. Third soft values are generated for the information bit groups of the second constituent packet based on jointly evaluating the first and second soft values.
Abstract:
Signal properties of a signal section (106) comprising a training sequence are compared with corresponding signal properties of other signal sections (108, 110). At a too large discrepancy, co-sequence interference is concluded to be present. The used signal property can preferably be a signal-to-noise ratio measure or a signal statistics measure. If the existence of co-sequence interference (102) is concluded, measures can be taken to avoid such interference and to mitigate the effects of the interference. A method for mitigating effects of co-sequence interference in channel estimation comprises a joint detection and estimation procedure performed under constrictions assuming presence of co-sequence interference.
Abstract:
A multi-branch receiver comprises a plurality of signal branches including branch filters to filter respective branch input signals and to produce corresponding branch output signals, a combiner to combine the branch output signals to produce a combined baseband signal, a pre-filter to filter the combined baseband signal to produce a received signal with minimum phase channel characteristics, and an equalizer to generate an estimate of a data sequence contained in the received signal.
Abstract:
To receive a signal from a multiple-input-multiple-output (MIMO) communication channel, initial channel taps are generated based on an impulse response estimate of the MIMO communication channel. The received signal is pre-filtered using the initial channel taps to generate output channel taps and a corresponding output signal having an increased signal-to-noise ratio (SNR) and uncorrelated noise. The SNR is based on a ratio of the energy in a first subset of the output channel taps to the energy in a second subset of the output channel taps.
Abstract:
A modulator includes a symbol mapper that is configured to map respective bits sets of a bit sequence corresponding to a burst and including data, training, tail, and guard bits into respective symbols to form a symbol sequence of data, training, tail, and guard symbols. A vector precoder is configured to apply a vector precoding transformation to the data and training symbols to form precoded symbols. These precoded symbols are combined with the tail and guard symbols in a symbol processor to form a sequence of transmit symbols. The record precoding conducted by the modulator of a transmitter enables improved link performance without the cost of increased processing complexity of the receiver algorithm.
Abstract:
A distributed parameter update procedure is provided for updating parameters that do not have discrete values. When a parameter value is changed, a search is conducted of a parameter space to find a new parameter value minimizes some cost function. The cost function is derived based on the current parameter settings in neighboring nodes. The distributed parameter update procedure may simplify the search process by localizing the search of the parameter space for a new parameter value to the vicinity of the current parameter setting. In some embodiments, the search is conducted along a line of steepest descent emanating from the current parameter setting.