Abstract:
A UE in a wireless communication network transmits succinct, direct channel state information to the network, enabling coordinated multipoint calculations such as joint processing, without substantially increasing uplink overhead. The UE receives and processes reference symbols over a set of non-uniformly spaced sub-carriers, selected according to a scheme synchronized to the network. The frequency response for each selected sub-carrier is estimated conventionally, and the results quantized and transmitted to the network on an uplink control channel. The non-uniform sub-carrier selection may be synchronized to the network in a variety of ways.
Abstract:
Systems and method are disclosed for graph-based distributed parameter coordination in a communication network. In general, discrete local parameters to be coordinated among communication nodes in the network and their respective performance metrics, or costs, are modeled using a factor graph. Based on the factor graph, a variant of the sum-product algorithm, namely the min-sum algorithm, is applied in order for the communication nodes, through iterative message passing with their neighboring communication nodes, to decide upon optimal values for the local parameters for the communication nodes that collectively optimize a global performance metric across the communication network. In one embodiment, the communication network is a wireless communication network. In one specific embodiment, the wireless communication network is a cellular communication network.
Abstract:
A transmitter, receiver, and method for channel estimation for a Multiple-Input Multiple-Output (MIMO) communication system in which the transmitter includes a multiplicity of transmit antennas spaced such that spacing between adjacent antennas provides a spatial correlation coefficient greater than a threshold level. The transmitter selects a subset of the multiplicity of transmit antennas for transmitting the pilot reference signals. The pilot reference signals are transmitted only from the selected subset of transmit antennas to the receiver. The receiver includes a channel estimator configured to derive a channel estimation for all of the multiplicity of transmit antennas using the received pilot reference signals and known or estimated spatial correlation among the multiplicity of transmit antennas.
Abstract:
A method for determining antenna weights for use in transmitting data from a plurality of base stations to a user device is disclosed. The antenna weights are determined using an input covariance matrix (S), and the input covariance matrix is determined subject to a predetermined power constraint and a predetermined, non-zero interference constraint.
Abstract:
The embodiments of the present invention relate to a method in a transmitting unit; a method in a receiving unit; a transmitting unit and a receiving unit, in a wireless communication network employing Time Division Multiple Access, TDMA, for transmitting and, receiving and demodulating data, respectively, the data being transmitted in a signal comprising a burst, wherein bursts relating to NMS number of mobile stations are multiplexed into a single time slot. The transmission comprises grouping a block of N b number of user code bits, representing the data to be transmitted, into NDS/NMS groups of user code bits. Mapping the groups of user code bits to data symbols such that one group is represented by one data symbol, thereby obtaining a block of data symbols, wherein each data symbol is drawn from one or more pre-defined complex-valued symbol constellation(s). The transmission further comprises repeating the block of data symbols, such that the burst to be transmitted comprises NMS number of equal blocks of data symbols, rotating the NMS number of blocks of data symbols according to a mobile-station-specific rotation, and transmitting the rotated blocks of data symbols in a burst in the time slot.
Abstract:
Inter-CoMP cell interference is reduced by “extending” at least one CoMP cell to include UEs served by a neighboring CoMP cell in the extended CoMP cell's transmission calculations, so as to minimize interference to the UEs served by other CoMP cells. Each UE in a border sub-cell identifies neighboring CoMP cells from which it receives interference in excess of a threshold value, and includes the interfering CoMP cells in a close-neighbor set. The close-neighbor set is transmitted to the UE's serving CoMP cell controller. When downlink transmissions are scheduled to the target UE, the controller notifies the neighboring CoMP cells in the close-neighbor set, identifying the target UE. Those CoMP cells then use information about the channel conditions from their transmit antennas to the target UE receive antennas to compute transmissions to UEs they serve, with the constraint that interference to the target UE is below a predetermined level.
Abstract:
A distributed parameter update procedure is provided for updating parameters that do not have discrete values. When a parameter value is changed, a search is conducted of a parameter space to find a new parameter value minimizes some cost function. The cost function is derived based on the current parameter settings in neighboring nodes. The distributed parameter update procedure may simplify the search process by localizing the search of the parameter space for a new parameter value to the vicinity of the current parameter setting. In some embodiments, the search is conducted along a line of steepest descent emanating from the current parameter setting.
Abstract:
A transmitter, receiver, and method for channel estimation for a Multiple-Input Multiple-Output (MIMO) communication system in which the transmitter includes a multiplicity of transmit antennas spaced such that spacing between adjacent antennas provides a spatial correlation coefficient greater than a threshold level. The transmitter selects a subset of the multiplicity of transmit antennas for transmitting the pilot reference signals. The pilot reference signals are transmitted only from the selected subset of transmit antennas to the receiver. The receiver includes a channel estimator configured to derive a channel estimation for all of the multiplicity of transmit antennas using the received pilot reference signals and known or estimated spatial correlation among the multiplicity of transmit antennas.
Abstract:
A UE in a wireless communication network transmits succinct, direct channel state information to the network, enabling coordinated multipoint calculations such as joint processing, without substantially increasing uplink overhead. The UE receives and processes reference symbols over a set of non-uniformly spaced sub-carriers, selected according to a scheme synchronized to the network. The frequency response for each selected sub-carrier is estimated conventionally, and the results quantized and transmitted to the network on an uplink control channel. The non-uniform sub-carrier selection may be synchronized to the network in a variety of ways.
Abstract:
An iterative, blind, frequency-offset estimation process that does not require any training signal or demodulated information symbols is disclosed. Receivers embodying the disclosed processes can produce periodic frequency-offset estimates, without running computationally intensive equalization or demodulation algorithms, by exploiting the temporal correlation of the received signal in the time domain, as well as the received signal's correlation across in-phase and quadrature dimensions, in some embodiments, to find a frequency-offset estimate that best fits the received signal in a maximum-likelihood sense. In an exemplary method of estimating receiver frequency offset, a temporally stacked signal block is formed from multi-branch signal samples corresponding to each of two or more time-separated samples of the received signal. The temporally stacked signal block is used in computing a maximum-likelihood joint estimate of the receiver frequency offset and the spatial covariance of the temporally stacked signal block de-rotated by the receiver frequency offset.