Abstract:
Systems and methods of performing data transmission and reception in a communication system are presented. In one exemplary embodiment, a method performed by a wireless device for transmitting a signal in a first communication system that is frequency-domain multiplexed with a second communication system may include generating (201), by a modulator (401), a modulated signal that represents one or more information symbols. The modulated signal may include one or more modulation symbols of the first communication system. The method may also include filtering (203), by a pulse shaping filter (403), the modulated signal to obtain the filtered modulated signal. The pulse shaping filter (403) may be configured to operate with a period that corresponds to the symbol rate of the second communication system. In addition, the method may include transmitting (209), by a transmitter (409), the filtered modulated signal at a carrier or sub-carrier frequency of the first communication system.
Abstract:
In a method, modulator, transmitter and receiver, the modulator of data signals to be transmitted simultaneously to at least two receiving mobile stations in the same transmission time slot is adapted to select rotational angle of a QPSK transmission modulation, such as a hybrid α-QPSK modulation used to modulate the data signals to the at least two mobile stations in response to the capabilities of the mobile stations that share the same transmission slot.
Abstract:
First and second groups of mobile terminal communications in a cell are defined. A basic frequency hopping sequence for both groups is identified. An offset from the basic hopping sequence is determined for each mobile terminal communication in the first and second groups and is used along with the basic frequency hopping sequence to generate an assigned frequency hopping sequence for each mobile terminal. Some of the assigned frequency hopping sequences overlap such that a first communication from the first group and a second communication from the second group simultaneously use the same time-frequency radio resource during one hop in their corresponding assigned frequency hopping sequences. The first and second mobile terminal communications use a different time-frequency radio resource during another hop in their respective assigned frequency hopping sequence thereby varying the offset for each mobile terminal communication in the second group to improve interference diversity between the two groups for each hop.
Abstract:
The invention relates to a method of determining the risk of developing acute renal failure (ARF) in an individual, or of determining an ARF, and a method of predicting the progression of an ARF, by detecting and/or quantifying the protein Ganglioside GM2 Activator Protein (GM2AP). The failure can be due to the administration of at least one nephrotoxic agent, wherein the nephrotoxic agent can be an aminoglycoside antibiotic as for example gentamicin.
Abstract:
By exploiting the multi-block structure of the used slot format having a training sequence in the time domain and at least one pre-coded user data block to sequentially reconstruct the slot, using in the first act known symbols and using detected symbols in each subsequent act and improved receiver may be provided. This may result in less ISI/IBI and therefore increased performance.
Abstract:
Adjacent channel interference (ACI) suppression is achieved by selectively applying one or more pre-calculated fixed filters only when necessary, thereby preserving the sensitivity of the receiver. An energy detector accurately detects adjacent channel interference in the frequency band of the desired signal so that the likelihood of a false detection of ACI is very low. If the energy detector detects adjacent channel interference is present in the band of the desired signal, then the received signal is selected to be filtered by the pre-calculated filter, e.g., a low pass filter. Otherwise, the pre-calculated filter is bypassed. In either case, additional ACI suppression processing may be employed.
Abstract:
Adjacent channel interference (ACI) suppression is achieved by selectively applying one or more pre-calculated fixed filters only when necessary, thereby preserving the sensitivity of the receiver. An energy detector accurately detects adjacent channel interference in the frequency band of the desired signal so that the likelihood of a false detection of ACI is very low. If the energy detector detects adjacent channel interference is present in the band of the desired signal, then the received signal is selected to be filtered by the pre-calculated filter, e.g., a low pass filter. Otherwise, the pre-calculated filter is bypassed. In either case, additional ACI suppression processing may be employed.
Abstract:
The system ensures electric feed for which purpose it has an alternating current motor (1) coupled to an alternator (2) which is coupled to a hydraulic motor (8) which in turn is coupled to a diesel engine (7.)The alternating current motor is coupled by means of a clutch (6) to a high pressure pump (5.)All the elements are governed by a control circuit (4) so that in the absence of network, it simultaneously drives the diesel engine (7) and the hydraulic motor (8) the latter initially maintaining the angular speed of the alternator, until the diesel engine (7) attains its normal working conditions; as of when it is mechanically coupled to the alternator (2), the hydraulic motor (8) remaining turned off.The high pressure pump is capable of being directly coupled to the diesel engine (7) with which the hydraulic motor (8) is the one which maintains the angular speed of the alternator (2) at all times.