TRANSFER OF MONOLAYER GRAPHENE ONTO FLEXIBLE GLASS SUBSTRATES
    31.
    发明申请
    TRANSFER OF MONOLAYER GRAPHENE ONTO FLEXIBLE GLASS SUBSTRATES 有权
    将单层石墨转移到柔性玻璃基板上

    公开(公告)号:US20160176755A1

    公开(公告)日:2016-06-23

    申请号:US14971163

    申请日:2015-12-16

    Abstract: Described herein are methods for improved transfer of graphene from formation substrates to target substrates. In particular, the methods described herein are useful in the transfer of high-quality chemical vapor deposition-grown monolayers of graphene from metal, e.g., copper, formation substrates to ultrathin, flexible glass targets. The improved processes provide graphene materials with less defects in the structure.

    Abstract translation: 这里描述的是用于改善石墨烯从地层衬底转移到目标衬底的方法。 特别地,本文描述的方法可用于将高质量化学气相沉积生长的石墨烯单层从金属例如铜,地层衬底转移到超薄,柔性玻璃靶。 改进的工艺为石墨烯材料提供了较少的结构缺陷。

    Bulk annealing of glass sheets
    32.
    发明授权
    Bulk annealing of glass sheets 有权
    玻璃板的散装退火

    公开(公告)号:US09340443B2

    公开(公告)日:2016-05-17

    申请号:US14047251

    申请日:2013-10-07

    Abstract: Surface modification layers and associated heat treatments, that may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, for example. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.

    Abstract translation: 可以在片材,载体或两者上提供表面改性层和相关的热处理,以控制薄板和载体之间的室温范德华(和/或氢)键合和高温共价键合。 例如,在真空处理,湿法处理和/或超声波清洗处理中,室温粘合被控制为足以将薄片和载体保持在一起。 同时控制高温共价键,以防止在高温加工过程中薄片和载体之间的永久性结合,并且保持足够的粘结以防止在高温加工过程中的分层。

    SILICON AND SILICA NANOSTRUCTURES AND METHOD OF MAKING SILICON AND SILICA NANOSTRUCTURES
    33.
    发明申请
    SILICON AND SILICA NANOSTRUCTURES AND METHOD OF MAKING SILICON AND SILICA NANOSTRUCTURES 审中-公开
    硅和二氧化硅纳米结构和制备硅和二氧化硅纳米结构的方法

    公开(公告)号:US20160002096A1

    公开(公告)日:2016-01-07

    申请号:US14750047

    申请日:2015-06-25

    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.

    Abstract translation: 本文提供了形成一个或多个硅纳米结构的方法,例如硅纳米管和含二氧化硅的玻璃基板。 作为用于制备硅纳米结构的方法的结果,含二氧化硅的玻璃基底包括一个或多个纳米柱,并且一个或多个硅纳米结构从含二氧化硅玻璃基底的纳米柱延伸。 硅纳米结构包括纳米管和任选的纳米线。 另一方面是在含二氧化硅的玻璃基板上制备硅纳米结构的方法。 该方法包括在含二氧化硅的玻璃衬底上提供一种或多种金属纳米颗粒,然后在适合于形成一种或多种硅纳米结构的条件下进行含二氧化硅的玻璃衬底的反应离子蚀刻。

    GRAPHENE DOPING BY THERMAL POLING
    39.
    发明申请

    公开(公告)号:US20210347689A1

    公开(公告)日:2021-11-11

    申请号:US17285322

    申请日:2019-10-09

    Abstract: A method of forming a graphene device includes: providing a glass substrate with a blocking layer disposed thereon to form a stack; providing a first electrode and a second electrode; increasing the temperature of the stack to at least 100° C.; applying an external electric field (VP) to the first electrode such that at least one metal ion of the glass substrate migrates toward the first electrode to create a depletion region in the glass substrate adjacent the second electrode; decreasing the temperature of the stack to room temperature while applying the external electric field to the first electrode; and after reaching room temperature, setting the external electric field to zero to create a frozen voltage region adjacent the second electrode.

Patent Agency Ranking