Abstract:
A communication device is configured to encode and/or decode low density parity check (LDPC) coded signals. Such LDPC coded signals are characterized by LDPC matrices having a particular form. An LDPC matrix may be partitioned into a left hand side matrix and the right hand side matrix. The right hand side matrix can be lower triangular such that all of the sub-matrices therein are all-zero-valued sub-matrices (e.g., all of the elements within an all-zero-valued sub-matrix have the value of “0”) except for those sub-matrices located on a main diagonal of the right hand side matrix and another diagonal that is adjacently located to the left of the main diagonal. A device may be configured to employ different LDPC codes having different LDPC matrices for different LDPC coded signals. The different LDPC matrices may be based generally on a common form (e.g., with a right hand side matrix as described above).
Abstract:
A communication device is configured to encode and/or decode low density parity check (LDPC) coded signals. Such LDPC coded signals are characterized by LDPC matrices having a particular form. An LDPC matrix may be partitioned into a left hand side matrix and the right hand side matrix. The right hand side matrix can be lower triangular such that all of the sub-matrices therein are all-zero-valued sub-matrices (e.g., all of the elements within an all-zero-valued sub-matrix have the value of “0”) except for those sub-matrices located on a main diagonal of the right hand side matrix and another diagonal that is adjacently located to the left of the main diagonal. A device may be configured to employ different LDPC codes having different LDPC matrices for different LDPC coded signals. The different LDPC matrices may be based generally on a common form (e.g., with a right hand side matrix as described above).
Abstract:
Impulse and/or burst noise signal to noise ratio (SNR) aware concatenated forward error correction (FEC). Adaptive processing is performed on a signal based on one or more effects which may deleteriously modify a signal. For example, based on a modification of a signal to noise ratio (SNR) associated with one or more impulse or burst noise events, which may be estimated, different respective processing may be performed selectively to differently affected bits associated with the signal. For example, two respective SNRs may be employed: a first SNR for one or more first bits, and a second SNR for one or more second bits. For example, as an impulse or burst noise event may affect different respective bits of a codeword differently, and adaptive processing may be made such that different respective bits of the codeword may be handled differently.
Abstract:
Embodiments include, but are not limited to, systems and methods for enabling Orthogonal Frequency Division Multiple Access (OFDMA) in the upstream in an Ethernet Passive Optical Network over Coax (EPoC) network. Embodiments include systems and methods for translating Ethernet Passive Optical Network (EPON) upstream time grants to OFDMA resources represented by individual subcarriers of an upstream OFDMA frame. In an embodiment, the translation of EPON upstream time grants to OFDMA resources ensures that Coaxial Network Units (CNUs) sharing an OFDMA frame do not use overlapping subcarriers within the frame. Embodiments further include systems and methods for timing upstream transmissions by the CNUs in order for the transmissions to be received within the same upstream OFDMA frame at a Fiber Coax Unit (FCU). Embodiments further include systems and methods for re-generating a data burst from OFDMA resources for transmission from the FCU to an Optical Line Terminal (OLT).
Abstract:
Systems and methods for push button configuration of devices are provided. One system comprises one or more circuits configured to determine that a configuration button on the second device has been activated and determine whether a configuration button has been activated on a first device or a third device within a time interval from a time at which the button on the second device is activated. The circuits are configured to, in response to determining that the configuration button has been activated on either the first device or the third device within the time interval, allow the second device to be authenticated. The circuits are configured to, in response to determining that the configuration button has not been activated on either the first device or the third device within the time interval, prevent admission of the second device. The network may be a wired network, such as a MoCA network.
Abstract:
A communication device is operative to generate and orthogonal frequency division multiplexing (OFDM) symbol that includes one or more data and ranging modulation symbols. The data and ranging modulation symbols may be included within different sub-carriers of the OFDM symbol. The OFDM symbol is used to generate an OFDM symbol pair in the frequency domain (FDOM). After conversion from the FDOM to the time domain (TDOM), the OFDM symbol pair may then undergoes post-processing in the TDOM before transmission. Such post-processing may include the addition of cyclic prefix (CP) and cyclic suffix (CS) to the OFDM symbol pair in the TDOM as well as filtering using a window function. The OFDM symbol may be generated as an orthogonal frequency division multiple access (OFDMA) symbol, and two were more OFDM symbols or OFDMA symbols may be arranged in a frame.
Abstract:
A communication device is operative to generate and orthogonal frequency division multiplexing (OFDM) symbol that includes one or more data and ranging modulation symbols. The data and ranging modulation symbols may be included within different sub-carriers of the OFDM symbol. The OFDM symbol is used to generate an OFDM symbol pair in the frequency domain (FDOM). After conversion from the FDOM to the time domain (TDOM), the OFDM symbol pair may then undergoes post-processing in the TDOM before transmission. Such post-processing may include the addition of cyclic prefix (CP) and cyclic suffix (CS) to the OFDM symbol pair in the TDOM as well as filtering using a window function. The OFDM symbol may be generated as an orthogonal frequency division multiple access (OFDMA) symbol, and two were more OFDM symbols or OFDMA symbols may be arranged in a frame.
Abstract:
A communication device is configured adaptively to process a receive signal based on noise that may have adversely affected the signal during transition via communication channel. The device may be configured to identify those portions of the signal of the signal that are noise-affected (e.g., noise-affected sub-carriers of an orthogonal frequency division multiplexing (OFDM) signal), or the device may receive information that identifies those portions of the signal that are noise-affected from one or more other devices. The device may be configured to perform the modulation processing of the received signal to generate log-likelihood ratios (LLRs) for use in decoding the signal. Those LLRs associated with noise-affected portions of the signal are handled differently than LLRs associated with portions of the signal that are not noise-affected. The LLRs may be scaled based on signal to noise ratio(s) (SNR(s)) associated with the signal (e.g., based on background noise, burst noise, etc.).
Abstract:
Embodiments include, but are not limited to, systems and methods for enabling Orthogonal Frequency Division Multiple Access (OFDMA) in the upstream in an Ethernet Passive Optical Network over Coax (EPoC) network. Embodiments include systems and methods for translating Ethernet Passive Optical Network (EPON) upstream time grants to OFDMA resources represented by individual subcarriers of an upstream OFDMA frame. In an embodiment, the translation of EPON upstream time grants to OFDMA resources ensures that Coaxial Network Units (CNUs) sharing an OFDMA frame do not use overlapping subcarriers within the frame. Embodiments further include systems and methods for timing upstream transmissions by the CNUs in order for the transmissions to be received within the same upstream OFDMA frame at a Fiber Coax Unit (FCU). Embodiments further include systems and methods for re-generating a data burst from OFDMA resources for transmission from the FCU to an Optical Line Terminal (OLT).
Abstract:
System and methods for transmitting packets over a network are provided. A system includes a network access coordinator (NAC) configured to communicate with first and second nodes via a network backbone. The NAC is configured to coordinate access of the first and second nodes to the network backbone. The NAC is configured to receive, from the first node in a first time period, a first reservation request to transmit a first packet to the second node. The NAC is configured to allocate, in response to the first reservation request, a first slot in a second time period for the first node to transmit the first packet to the second node. The NAC is configured to allocate a second slot for the second node to transmit, to the first node, a first reply that includes an indicator of whether the second node received the first packet.