Abstract:
A signal generator includes N stages of cascaded control signal generating circuits, and is configured to receive K clock signals whose valid pulse edges are different from each other by a set time, an n-th control signal generating circuit of the N stages of control signal generating circuit generates a strobe signal based on a k-th clock signal of the K clock signals and sequentially outputs at least two different clock signals of other K−1 clock signals based on the strobe signal. A valid pulse edge of the k-th clock signal is within a valid pulse duration of a strobe signal of an (n−1)-th stage control signal generating circuit.
Abstract:
The present disclosure relates to an imaging device, an imaging control method, an electronic apparatus, and a readable storage media. The imaging device includes an image sensor, a spatial attitude sensor, a processor, a liquid crystal lens, and a control circuit. The liquid crystal lens is arranged on an imaging optical path of the image sensor and coupled to the control circuit. The spatial attitude sensor is configured to acquire a spatial attitude of the imaging device, and send the spatial attitude to the processor. The processor is configured to calculate an offset vector of the imaging device according to the spatial attitude, determine a light emission direction of the liquid crystal lens according to the offset vector, acquire a first control signal according to the light emission direction, and send the first control signal to the control circuit. The control circuit is configured to control the liquid crystal lens to swing focus according to the first control signal.
Abstract:
The present disclosure relates to an imaging device, an imaging control method, an electronic apparatus, and a readable storage media. The imaging device includes an image sensor, a spatial attitude sensor, a processor, a liquid crystal lens, and a control circuit. The liquid crystal lens is arranged on an imaging optical path of the image sensor and coupled to the control circuit. The spatial attitude sensor is configured to acquire a spatial attitude of the imaging device, and send the spatial attitude to the processor. The processor is configured to calculate an offset vector of the imaging device according to the spatial attitude, determine a light emission direction of the liquid crystal lens according to the offset vector, acquire a first control signal according to the light emission direction, and send the first control signal to the control circuit. The control circuit is configured to control the liquid crystal lens to swing focus according to the first control signal.
Abstract:
A liquid crystal display panel and a manufacturing method therefor, and a display device are provided. The display panel includes an opposing substrate, an array substrate, and a sealant. A limiting portion surrounding a display region is disposed in a non-display region of the opposing substrate. A non-display region of the array substrate includes a loosely-arranged wire region surrounding a display region and a densely-arranged wire region surrounding the loosely-arranged wire region. The layer height of the array substrate in the densely-arranged wire region is greater than that of the array substrate in the loosely-arranged wire region. The projection of the sealant on the opposing substrate is located outside the limiting region and the projection of the sealant on the array substrate is located in the densely-arranged wire region.
Abstract:
An advanced super dimension switch (ADS) liquid crystal display device, a first substrate, a second substrate disposed opposite to the first substrate, a first polarizing sheet attached onto the first substrate, and a second polarizing sheet attached onto the second substrate; the ADS liquid crystal display device further comprises a graphene film, and the graphene film is provided within the second polarizing sheet. Further disclosed is a method of manufacturing an ADS liquid crystal display device.
Abstract:
An optical lens includes: a first region, including a first incident surface and a first emergent surface that face each other, wherein the first incident surface is for, when a display panel is detected, receiving a first light ray from a plane region, and the first light ray exits from the first emergent surface after passing through the first region; a second region, connected to the first region, including a second incident surface and a second emergent surface that face each other, wherein the second incident surface is for, when the display panel is detected, receiving a second light ray that is from a curved-surface region and propagates in a first direction, and the second light ray exits from the second emergent surface in a second direction after passing through the second region; and the first emergent surface and the second emergent surface are located in a same plane.
Abstract:
The embodiments of the present disclosure provide a data transmission circuit, a display device and a data transmission method. The data transmission circuit includes a serial-to-parallel conversion circuit configured to receive serial data and a mode setting signal, generate a mode selection signal according to the mode setting signal, and convert the serial data into parallel data with a corresponding bit width according to the mode selection signal; a control signal generating circuit configured to generate a control signal based on the mode setting signal; and a latch circuit connected to the serial-to-parallel conversion circuit and the control signal generating circuit, and being configured to receive the parallel data from the serial-to-parallel conversion circuit and the control signal from the control signal generating circuit, and latch and output the received parallel data under the control of the control signal.
Abstract:
An address latch, a display device, and an address latching method are disclosed. The address latch includes a write control circuit, a write latch circuit, a latch control circuit, an intermediate latch circuit, and an output latch circuit. The write latch circuit is configured to latch an address data in response to N write control signals generated by the write control circuit, N data bits of the address data are divided into (M−1) data bit groups; the latch control circuit is configured to sequentially generate M latch control signals; the intermediate latch circuit is configured to, in response to first to (M−1)-th latch control signals, latch first to (M−1)-th data bit groups latched by the write latch circuit in a time-division manner; and the output latch circuit is configured to output the address data latched by the intermediate latch circuit in response to an M-th latch control signal.
Abstract:
A data caching circuit includes a ring signal counter, a switch, and a first latch. An output terminal of the ring signal counter is connected to a control terminal of the switch. An output terminal of the switch is connected to a control terminal of the first latch. The ring signal counter is configured to input a data transmission starting signal and a clock signal to generate and output a count control signal. A clock signal terminal of the switch is configured to input the clock signal, and the switch is configured to generate and output a data caching control signal according to the input count control signal and clock signal. A data signal input terminal of the first latch is configured to input a data signal. The first latch is configured to latch the data signal according to the data caching control signal input from the control terminal of the first latch. An output terminal of the first latch is configured to output the data signal.
Abstract:
The present invention provides a color filter substrate and a liquid crystal panel. The color filter substrate according to an embodiment of the present invention comprises a base substrate, a color filter layer and an optical layer which is provided on the color filter layer and comprises an ultraviolet absorption material. The ultraviolet absorption material in the color filter substrate or the liquid crystal panel according to the present invention can absorb ultraviolet and prevent the color resin in the color filter layer from being damaged by ultraviolet transmitting through the optical layer.