Abstract:
A microfluidic chip and a driving method thereof are provided. The microfluidic chip includes a base substrate, a driving circuit array, a first decoding circuit, and a second decoding circuit, the driving circuit array, the first decoding circuit, and the second decoding circuit are all integrated on the base substrate; the first decoding circuit is configured to generate and output a target scan driving signal to the driving circuit array; the second decoding circuit is configured to generate and output a target driving voltage signal to the driving circuit array; and the driving circuit array is configured to control an operation of a liquid droplet over the driving circuit array based on the target scan driving signal and the target driving voltage signal.
Abstract:
The present disclosure provides a sub-pixel unit, a display panel, a display apparatus, and a driving method of the display apparatus, which belongs to the field of display technology. The sub-pixel unit includes a plurality of sub-pixels; any of the sub-pixels includes a display module, a control module, and a driving module; wherein the control module is connected to a second gate line, a data line, a first voltage end and a first node, and configured to receive a data signal on the data line under control of a signal on the second gate line, and control one of the data line and the first voltage end to be connected to the first node according to the received data signal; and the driving module is connected to a first gate line, the first node and the display module, and configured to drive the display module according to a signal on the first node under control of a signal on the first gate line.
Abstract:
A driving method, a driving apparatus and a display device are disclosed. The driving method comprises: forming a first partition overdriving table and a second partition overdriving table. The first partition overdriving table corresponds to the first partition, and the second partition overdriving table corresponds to the second partition. The first partition overdriving table and the second partition overdriving table have the same matrix form. Smooth treatment is performed on a first partition and a second partition which are adjacent to each other according to the first smooth algorithm so as to blur the boundary between the first partition and the second partition, thereby effectively reducing or eliminating the phenomenon of demarcation between multiple partitions.
Abstract:
The present invention provides a backlight adjustment method, a backlight adjustment system and a display device. The backlight adjustment method comprises: dividing a frame of picture into n image blocks, obtaining the sub-backlight brightness corresponding to each image block, and further comprises: calculating an average backlight brightness corresponding to the frame of the picture on the basis of each sub-backlight brightness, determining whether the sub-backlight brightness needs to be enhanced on the basis of the average backlight brightness, and performing enhancement for the sub-backlight brightness which needs to be enhanced, wherein n is an integer greater than 1. The backlight adjustment method not only solves the problems of reduced brightness for bright picture and poor display effect associated with existing backlight adjustment method, but also reduces the overall display power consumption, increase the image contrast and reduce influence of mura (ripple phenomenon) on the screen.
Abstract:
Embodiments of the present application provide a method for decoding a video and an apparatus for decoding a video, which increases accuracy of data processing while simplifying a micro architecture design of inverse discrete cosine transform in video decoding process. The method comprises: storing received data to be decoded in a plurality of first data registers and a plurality of second data registers that are spaced with each other in sequence; performing shift and look-up table processing on the data to be decoded that is stored in the first data registers and the second data register, to obtain a look-up table result corresponding to a first coefficient matrix and a look-up table result corresponding to a second coefficient matrix respectively; performing a distributed computing on the look-up table result corresponding to the first coefficient matrix and the look-up table result corresponding to the second coefficient matrix, to obtain decoded data.
Abstract:
The disclosure provides a synchronous display method of an spliced display screen which comprises at least two spliced display units and at least two timing controllers respectively corresponding to the spliced display units, wherein the method comprises steps of: receiving, by each timing controller, a timing control signal for a current frame of the corresponding spliced display unit, feedback from the spliced display unit corresponding to the timing controller; determining, by each timing controller, a phase difference between the timing control signal for the current frame of the corresponding spliced display unit and a reference timing control signal received by the timing controller; judging, by each timing controller, whether or not the phase difference goes beyond a predetermined threshold range; if it is judged that the phase difference goes beyond the predetermined threshold range, generating a phase adjustment value, by the timing controller, based on the phase difference, wherein the phase adjustment value is less than the phase difference; generating, by each timing controller, a next timing control signal for a next frame of the corresponding spliced display unit, based on the phase adjustment value, so that a next phase difference between the next timing control signal for the next frame and the reference timing control signal is the phase adjustment value; and outputting the next timing control signal for the next frame to the corresponding spliced display unit. Meanwhile, the disclosure also provides a timing controller used in this synchronous display method and a spliced display screen to which this synchronous display method is applied.
Abstract:
Disclosed are a backlight module, a control method therefor and a display device, a driving method therefor. A backlight source is divided into light-emitting areas, and a current control circuit for driving the light-emitting area to emit light is configured for each light-emitting area. The light-emitting areas in the backlight module are arranged in one-to-one correspondence to the current control circuits.
Abstract:
The embodiments of the present disclosure provide a data transmission circuit, a display device and a data transmission method. The data transmission circuit includes a serial-to-parallel conversion circuit configured to receive serial data and a mode setting signal, generate a mode selection signal according to the mode setting signal, and convert the serial data into parallel data with a corresponding bit width according to the mode selection signal; a control signal generating circuit configured to generate a control signal based on the mode setting signal; and a latch circuit connected to the serial-to-parallel conversion circuit and the control signal generating circuit, and being configured to receive the parallel data from the serial-to-parallel conversion circuit and the control signal from the control signal generating circuit, and latch and output the received parallel data under the control of the control signal.
Abstract:
A circuit and method for eliminating image sticking during power-on and power-off, the circuit for eliminating image sticking during power-on and power-off includes a voltage detecting module and a common signal writing module; the voltage detecting module detects whether an operating voltage is lower than a first threshold voltage during power-on, and detects whether the operating voltage is lower than a second threshold voltage during power-off; and the common signal writing module writes, when the operating voltage is lower than the first threshold voltage during power-on or the operating voltage is lower than the second threshold voltage during power-off, a signal with a voltage equal to a voltage at a common voltage signal terminal at the same timing, to a data line.
Abstract:
A control method and a control apparatus for a naked eye 3D display apparatus and a naked eye 3D display apparatus are described. The control method for a naked eye 3D display apparatus includes: detecting the position of a user; determining viewpoints where the left eye and right eye of the user are located according to the detected position of the user; and turning on sub-pixels corresponding to the determined viewpoints and turning off other sub-pixels. Such a control method enables a user is caused to only see those display pictures corresponding to viewpoints that need to be seen, thereby solving the problem of cross-talk between multiple viewpoints.