Abstract:
Methods and apparatuses are presented to locate a wireless communication device. A target device may be out of range of a source device for normal ranging communications according to a first radio access technology (RAT), such as ultra wideband (UWB) communications. A source device may therefore modify communications according to the first RAT, to increase the transmit power, while removing the data payload. The target device may utilize the signal strength and angle of arrival of the modified communications to guide the user to move toward the source device, e.g., until the target device is within range to perform normal ranging communications. A second RAT, such as Bluetooth, may be used to communicate between the two devices while the target device is out of range of the first RAT. For example, the target device may use the second RAT to communicate to the source device to start/stop transmitting modified communications.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
Embodiments are disclosed for terahertz spectroscopy and imaging in dynamic environments. In an embodiment, a transmitter of an electronic device emits a continuous electromagnetic (EM) wave in the terahertz (THz) frequency band into a dynamic environment that includes a transmission medium that changes over time. A receiver of the electronic device, receives an EM wave reflected off an object in the environment and determines a spectral response of the reflected EM wave. The spectral response includes absorption spectra at a frequency in the THz frequency band that is indicative of a known target transmission medium. The absorption spectra of the target transmission medium and a path length of the reflected EM wave signal are used to obtain the concentration level of the target transmission medium from a reference library of known concentration levels.
Abstract:
Exemplary embodiments include a system having a first wireless audio output device and a second wireless audio output device. One of the first or second audio output devices is configured to one of connect as a slave to a source device in a first piconet and connect as a master to the other one of the first or second audio output devices in a second piconet. The one of the first or second wireless audio output devices determines whether an audio packet transmitted by the source device via the first piconet was received by the first wireless audio output device and the second wireless audio output device, and, when at least one of the first wireless audio output device or the second wireless audio output device did not receive the audio packet, the audio packet is exchanged between the first and second wireless audio output devices via the second piconet.
Abstract:
Exemplary embodiments include a method performed by a wireless device configured as a slave in a first piconet and configured as a master in a second piconet. The method includes determining whether the wireless device has data to transmit over the second piconet to an other wireless device, determining an availability of a full slot in a first piconet schedule, selecting a data transmission scheme based on the availability of the full slot in the first piconet schedule and transmitting the data via the second piconet to the other wireless device in accordance with the selected data transmission scheme.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
A transceiver that allows dynamic high-pass filter (HPF) cut-off frequency adjustment may include a mixer circuit to mix a local oscillator (LO) signal with a receive (RX) signal received from a transmitter to generate a baseband signal. The transceiver may further include a high-pass filter (HPF) having an adjustable cut-off frequency that is used to reduce a DC offset of the baseband signal. A control circuit can dynamically control components of the HPF to set the adjustable cut-off frequency at a first frequency during a first time period and at a second frequency during a second time period.
Abstract:
A host device is configured to increase the power output by an internal amplifier of its wireless chipset in response to requests from a remote device. Once the internal amplifier has reached its maximum power, further requests for power increases from the remove device do not similarly lead to automatic power increases being delivered by a external amplifier of the host device. Rather, the host device determines the strength of the link between it and the remote device. If the signal strength is too low, it is an indication that the signal power output by the remote device may not be sufficient to maintain the link and that any further increases in signal power by the host device will have little or no effect on the link. However, if the signal strength from the remote device is sufficient, the host device determines an error rate between it and the remote device. If the error rate is sufficiently low to maintain the link, then the host device will not further increase its signal output power. However, if the error rate is too high, the host device will turn on and/or increase power from its external amplifier to boost the power of its output signal and, thus, improve the error rate between it and the remote device.
Abstract:
A host device is configured to increase the power output by an internal amplifier of its wireless chipset in response to requests from a remote device coupled via a data link. Once the internal amplifier has reached its maximum power, the host device may determine the strength of the data link between it and the remote device. If the strength is low, it is an indication that further increases in signal power by the host device may have little effect on the link. If the signal strength from the remote device is sufficient, the host device determines an error rate. If the error rate is sufficiently low, the host device will not increase its signal output power. However, if the error rate is too high, the host device may increase power from its external amplifier to improve the error rate of the data link.
Abstract:
The present techniques relate to reducing interference on conducted RF links by utilizing country information to determine where an electronic device is located, and using such information to select sub-bands or channels that are not available for wireless transmission to be used for transmission of signals via the conducted RF links. Because the conducted RF links operate on frequency bands that are different from the frequency bands used for wireless communications in a given country, there is less likelihood that wireless communications will create interference in the signals being transmitted via the conducted RF links.