Abstract:
Netting (1101) comprising an array of polymeric strands (1102,1104), wherein the polymeric strands are periodically joined together at bond regions throughout the array, and wherein at least a plurality (i.e., at least two) of the polymeric strands have a core (1114) of a first polymeric material and a sheath (1103) of a second, different polymeric material. Nettings described herein have a variety of uses, including wound care, tapes, filtration, absorbent articles, pest control articles, geotextile applications, water/vapor management in clothing, reinforcement for nonwoven articles, self bulking articles, floor coverings, grip supports, athletic articles, and pattern coated adhesives.
Abstract:
Netting (100) comprising an array of polymeric strands (101, 102), wherein the polymeric strands (101, 102) are periodically joined together at bond regions (105) throughout the array with spaces (103, 109) between adjacent strands, wherein at least a plurality (i.e., at least two) of the strands are hollow polymeric strands (i.e., a hollow core (106) with a sheath (107) surrounding the hollow core), and wherein at least 50 percent by number of the strands do not substantially cross over each other. In some embodiments, the core comprises fluid. Embodiments of nettings described herein are useful for example, for thermal transport in thermal interface articles used to control the temperature of and/or dissipate heat for electronic components and batteries or mechanical devices.
Abstract:
The present invention is a process for converting a multilayer filament to a plurality of nano-ribbons. The process includes co-extruding a first layer and a second layer to form the multilayer filament, and separating the multilayer filaments to form a plurality of nano-ribbons having substantially flat cross-sections.
Abstract:
Coextruded articles comprising first and second layers each having first and second opposed major surfaces and between the first and second layers a series of first walls providing a series of microchannels, and methods for making the same. Embodiment of coextruded articles described herein are useful, for example, in cushioning applications where high levels of compression are desired.
Abstract:
Coextruded articles comprising first and second layers each having first and second opposed major surfaces and between the first and second layers a series of first walls providing a series of microchannels, and methods for making the same. Embodiment of coextruded articles described herein are useful, for example, in cushioning applications where high levels of compression are desired.
Abstract:
A film having first segments and second segments arranged across the film's width direction is disclosed. The first and second segments are separated from each other by polymer interfaces. The first segments include a first polymeric composition and the second segments include a second polymeric composition. At least some of the second segments are layered second segments having first and second layers in the film's thickness direction, and one of the first or second layers includes a third polymeric composition different from the second polymeric composition. An extrusion die useful for making the film and a method for making the film using the extrusion die are also disclosed.
Abstract:
Three-dimensional polymeric strand netting, wherein a plurality of the polymeric strands are periodically joined together in a regular pattern at bond regions throughout the array, wherein a majority of the polymeric strands are periodically bonded to at least two (three, four, five, six, or more) adjacent polymeric strands, and wherein no polymeric strands are continuously bonded to a polymeric strand. Three-dimensional polymeric strand netting described herein have a variety of uses, including wound care, tapes, filtration, absorbent articles, pest control articles, geotextile applications, water/vapor management in clothing, reinforcement for nonwoven articles, self bulking articles, floor coverings, grip supports, athletic articles, and pattern coated adhesives.
Abstract:
Polymeric netting comprising polymeric ribbons and polymeric strands, each of the polymeric ribbons and polymeric strands having a length and a width, wherein the length is the longest dimension and the width is the shortest dimension, wherein a plurality of the polymeric strands are bonded together to form a netting layer, wherein adjacent polymeric strands in the netting layer are bonded intermittently at multiple locations along their respective lengths, wherein the netting layer has first and second opposing major surfaces, wherein the polymeric ribbons have a height-to-width aspect ratio of at least 2:1 and a minor surface defined by their width and length, and wherein the minor surface of a plurality of the polymeric ribbons is bonded to the first major surface of the netting layer. Polymeric netting described herein are useful, for example, in an absorbent article.
Abstract:
A film having first and second segments alternating across the film's width direction. The second segments are more elastic than the first segments. The first segments absorb light at a selected wavelength to a greater extent than the second segments. At least some of the first segments have apertures through their thicknesses, and a percentage of area of the first segments occupied by the apertures is greater than a percentage of area occupied by any apertures that may extend through the second segments. Laminates and absorbent articles including such films are also disclosed. A method of making the film is also described. The method includes forming apertures in at least some of the first segments using a laser at the selected wavelength. The first segments have a sufficient absorbance of light at the selected wavelength to form apertures through their thicknesses.
Abstract:
A polymeric netting including polymeric ribbons and polymeric strands. Each of the polymeric ribbons and strands has a length and width, with the length being the longest dimension and the width being the shortest dimension. The polymeric ribbons have a height-to-width aspect ratio of at least five to one, a major surface that is intermittently bonded to only one polymeric strand, and a height greater than the height of the one polymeric strand. An extrusion die and method useful for making the polymeric netting are also disclosed.