Abstract:
The invention relates to a phase-change memory device. The device includes a lower electrode disposed in a recess of a first dielectric. The lower electrode comprises a first side and a second side. The first side communicates to a volume of phase-change memory material. The second side has a length that is less than the first side. Additionally, a second dielectric may overlie the lower electrode. The second dielectric has a shape that is substantially similar to the lower electrode.The present invention also relates to a method of making a phase-change memory device. The method includes providing a lower electrode material in a recess. The method also includes removing at least a portion of the second side.
Abstract:
The present invention relates to a process of forming a phase-change memory. A lower electrode is disposed in a first dielectric film. The lower electrode comprises an upper section and a lower section. The upper section extends beyond the first dielectric film. Resistivity in the upper section is higher than in the lower section. A second dielectric film is disposed over the first dielectric film and has an upper surface that is coplanar with the upper section at an upper surface.
Abstract:
A phase change memory with higher column landing margin may be formed. In one approach, the column landing margin may be increased by increasing the height of an electrode. For example, the electrode being made of two disparate materials, one of which includes nitride and the other of which does not. In another approach, a hard mask is used which is of substantially the same material as an overlying and surrounding insulator. The hard mask and an underlying phase change material are protected by a sidewall spacer of a different material than the hard mask. If the hard mask and the insulator have substantially the same etch characteristics, the hard mask may be removed while maintaining the protective character of the sidewall spacer.
Abstract:
A phase change memory may be formed in a way which reduces oxygen infiltration through a chalcogenide layer overlying a lower electrode. Such infiltration may cause oxidation of the lower electrode which adversely affects performance. In one such embodiment, an etch through an overlying upper electrode layer may be stopped before reaching a layer which overlies said chalcogenide layer. Then, photoresist used for such etching may be utilized in a high temperature oxygen plasma. Only after such plasma treatment has been completed is that overlying layer removed, which ultimately exposes the chalcogenide.
Abstract:
A memory may include a phase change memory material having an electrode including a material that is a conductive oxide or that forms a conductive oxide.
Abstract:
A crosspoint memory includes a shared address line. The shared address line may be coupled to cells above and below the address line in one embodiment. Voltage biasing may be utilized to select one cell, and to deselect another cell. In this way, each cell may be made up of a selection device and a crosspoint memory element in the same orientation. This may facilitate manufacturing and reduce costs in some embodiments.
Abstract:
The invention relates to a phase-change memory device. The device includes a double-wide trench into which a single film is deposited but two isolated lower electrodes are formed therefrom. Additionally a diode stack is formed that communicates to the lower electrode. Additionally, other isolated lower electrodes may be formed along a symmetry line that is orthogonal to the first two isolated lower electrodes. The present invention also relates to a method of making a phase-change memory device. The method includes forming two orthogonal and intersecting isolation structure s around a memory cell structure diode stack.
Abstract:
The invention includes a semiconductor processing method wherein an insulative mass is formed across a first electrical node and a second electrical node. The mass has a pair of openings extending therethrough to the electrical nodes. The individual openings each have a periphery defined by one of the electrical nodes and at least one sidewall. One of the openings extends to the first electrical node and is a first opening, and the other of the openings extends to the second electrical node and is a second opening. A dielectric material layer is formed within the openings to narrow the openings. Conductive material plugs are formed within the narrowed openings. The conductive material plug within the first opening is a first material plug, and is separated from the first electrical node by the dielectric material; and the conductive plug within the second opening is a second material plug, and is not separated from the second electrical node by the dielectric material. The invention also includes a semiconductor assembly comprising an anti-fuse construction and an electrically conductive interconnect construction.
Abstract:
This invention relates to a method and resulting structure, wherein a DRAM may be fabricated by using silicon midgap materials for transistor gate electrodes, thereby improving refresh characteristics of access transistors. The threshold voltage may be set with reduced substrate doping requirements. Current leakage is improved by this process as well.
Abstract:
A process for grading the junctions of a lightly doped drain (LDD) N-channel MOSFET by performing a low dosage phosphorous implant after low and high dosage arsenic implants have been performed during the creation of the N-LDD regions and N+ source and drain electrodes. The phosphorous implant is driven to diffuse across both the electrode/LDD junctions and the LDD/channel junctions.