摘要:
A transceiver (10) includes an RF transmitter (12) and an RF receiver (14) coupled together through a duplexer (30) or non-filtering multiport device (30′). Either device may leak significant portions (56, 58) of the transmit signal (20) into the receive signal (44), and may significantly distort the transmit signal (20). Distortion is compensated in the transmitter (12) through the use of a linear predistorter (68) that is adjusted in response to an RF feedback signal obtained from the antenna-side of the device. Transmit signal leakage is compensated in the receiver (14) by producing an RF cancellation signal (106) that, when combined with the receive signal (44) at RF at least partially cancels the transmit signal portions (56, 58) leaked into the receive signal (44). Residual leakage signal and intermodulation products thereof may be cancelled digitally.
摘要:
An RF transmitter (60) generates non-DC bias signals (104, 106) configured to improved power-added efficiency (PAE) in the operation of an RF amplifier (94). The RF amplifier (94) generates an amplified RF signal (126) which, due to the addition of the bias signals (104, 106), includes bias-signal-induced RF distortion (48, 50). The bias signals (104, 106) drive a bias-induced distortion cancellation circuit (152) that adjusts the bias signals to compensate for the influence of impedances experienced by the bias signals (104, 106) before being applied to the RF amplifier (94). After mixing with a baseband communication signal (64), adjusted bias signals (186, 188) are combined into a composite baseband signal (76), upconverted to RF in an upconversion section 84, and applied to the RF amplifier (94) where they cancel at least a portion of the bias-signal-induced RF distortion (48, 50).
摘要:
A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200, 1800, 2800) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Distortion introduced by an analog-to-digital converter (304) may be compensated using a variety of adaptive techniques. Linear distortion is compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112). The filtered-basis functions are combined together and subtracted from the forward-data stream (112).
摘要:
A digital communications transmitter (100) includes a digital linear-and-nonlinear predistortion section (200, 1800) to compensate for linear and nonlinear distortion introduced by transmitter-analog components (120). A direct-digital-downconversion section (300) generates a complex digital return-data stream (254) from the analog components (120) without introducing quadrature imbalance. A relatively low resolution exhibited by the return-data stream (254) is effectively increased through arithmetic processing. Distortion introduced by an analog-to-digital converter (304) may be compensated using a variety of adaptive techniques. Linear distortion is compensated using adaptive techniques with an equalizer (246) positioned in the forward-data stream (112). Nonlinear distortion is then compensated using adaptive techniques with a plurality of equalizers (226) that filter a plurality of orthogonal, higher-ordered-basis functions (214) generated from the forward-data stream (112). The filtered-basis functions are combined together and subtracted from the forward-data stream (112).
摘要:
A digital communication transmitter serves as a signal path (10) which uses an adaptive equalizer (18) in a predistortion role. The adaptive equalizer (18) pre-distorts a complex digital communication signal (12) that need not exhibit any distortion. Subsequent analog distortion-introducing segments (24, 30, 36, 42) then distort a predistorted signal (22) output from the adaptive equalizer (18). An error signal (46) is formed from a reference signal (52) and a return signal (54). The equalizer (18) implements an adaptation algorithm that adjusts filter (68) coefficients to minimize correlation between one of the reference and return signals (52, 54) and the error signal (46). The equalizer (18) generates four sets of coefficients for four different filters. Consequently, the equalizer (18) exhibits four degrees of freedom in introducing predistortion into a complex signal to counter the distortion subsequently introduced in the signal path (10) by the distortion-introducing segments (24, 30, 36, 42).
摘要:
A transmitter (32) generates a time-varying stabilized bias signal (82) from which an amplifier-generated, sub-RF distortion signal (26) has been canceled. The distortion signal (26) is a byproduct of amplification and is generated due to imperfect linearity and/or other characteristics of a linear RF power amplifier (36). An envelope amplifier (84) includes a high bandwidth differential input, linear, bias signal amplifier (120) and a low bandwidth switching amplifier (122) coupled together to achieve both a high bandwidth and high efficiency. A control loop (154) feeds a portion of the voltage V(t) from a conduction node (146) of the RF power amplifier (36) to one of the differential inputs of the linear bias signal amplifier (120), while a bias control signal (92) drives the other differential input. The portion of voltage V(t) fed to bias signal amplifier (120) is a low power portion from which the RF portion has been removed.
摘要:
A transmitter (50) includes a low power nonlinear predistorter (58) that inserts predistortion configured to compensate for a memoryless nonlinearity (146) corresponding to gain droop and another memoryless nonlinearity (148) corresponding to a video signal. When efforts are taken to reduce memory effects, such as configuring a network of components (138) that couple to an HPA (114) to avoid resonance frequencies substantially throughout a video bandwidth (140), high performance linearization at low power results without extending linearization beyond that provided by the memoryless nonlinear predistorter (58). A look-up table (282) has address inputs responsive to a magnitude parameter (152) of a communication signal (54). A pre-distorted communication signal (60) is responsive to the output of the look-up table, a derivative signal (204), and possibly one or more variable bias parameters (85). The look-up table (282) is updated in response to an LMS control loop.
摘要:
A transmitter (32) generates a time-varying stabilized bias signal (82) from which an amplifier-generated, sub-RF distortion signal (26) has been canceled. The distortion signal (26) is a byproduct of amplification and is generated due to imperfect linearity and/or other characteristics of a linear RF power amplifier (36). An envelope amplifier (84) includes a high bandwidth differential input, linear, bias signal amplifier (120) and a low bandwidth switching amplifier (122) coupled together to achieve both a high bandwidth and high efficiency. A control loop (154) feeds a portion of the voltage V(t) from a conduction node (146) of the RF power amplifier (36) to one of the differential inputs of the linear bias signal amplifier (120), while a bias control signal (92) drives the other differential input. The portion of voltage V(t) fed to bias signal amplifier (120) is a low power portion from which the RF portion has been removed.
摘要:
An RF transmitter (10) includes an RF amplifier (28) that generates an amplified RF signal (36) including a linear RF signal (92) and a spurious baseband signal (94). The spurious baseband signal (94) interacts with bias feed networks (56, 66) to cause the RF amplifier (28) to generate an unwanted RF distortion at or near the allocated RF bandwidth. A baseband compensation signal (98) is generated and equalized in an adaptive equalizer (102) then fed to the RF amplifier (28). A feedback signal (46) is obtained from the RF amplifier (28) and used to drive the adaptive equalizer (102). A feedback loop causes the adaptive equalizer to adjust a baseband signal (24, 32) supplied to the RF amplifier (28) so that the RF distortion is minimized.
摘要:
A transmitter (50) includes a low power memoryless nonlinear predistorter (58) that inserts predistortion configured to address a nonlinearity (146) corresponding to gain droop and another nonlinearity (148) corresponding to deviations from an average bias condition. When efforts are taken to reduce memory effects, such as configuring a network of components (138) that couple to an HPA (114) to avoid resonance frequencies within a video bandwidth (140), high performance linearization at low power results without extending linearization beyond that provided by the memoryless nonlinear predistorter (58). Each nonlinearity is addressed by applying gain to a communication signal (54). The amount of gain applied is determined by a look-up table (170) for one nonlinearity (146) and by a look-up table (198) in combination with a differentiator (202) for the other nonlinearity (148). The look-up tables (170, 198) are updated in accordance with modified LMS control loops.