Abstract:
A new memory cell contains only a single thyristor without the need to include an access transistor. A memory array containing these memory cells can be fabricated on bulk silicon wafer. The memory cell contains a thyristor body and a gate. The thyristor body has two end region and two base regions, and it is disposed on top of a well. The memory cell is positioned between two isolation regions, and the isolation regions are extended below the well. A first end region is connected to one of a word line, a bit line and a third line. A second end region is connected to another of the word line, bit line, and third line. The gate is connected to the remaining of the word line, bit line and third line.
Abstract:
A semiconductor device, includes a memory cell including a thyristor element with a gate having a pnpn structure formed on a semiconductor substrate and having first and second terminals, and an access transistor formed on the semiconductor substrate and having first and second terminals connected to a bit line and the first terminal of the thyristor element, respectively, and a control section including a load current element whose load current flows, upon reading out operation, to the second terminal side of the thyristor element and configured to carry out access control to the memory cell.
Abstract:
A new memory cell can contain only a single thyristor. There is no need to include an access transistor in the cell. In one embodiment, the thyristor is a thin capacitively coupled thyristor. The new memory cell can be connected to word, bit, and control lines in several ways to form different memory arrays. Timing and voltage levels of word, bit and control lines are disclosed.
Abstract:
A memory cell is provided which includes an access transistor and a gated lateral thyristor (GLT) device. The access transistor includes a source node. The gated lateral thyristor (GLT) device includes an anode node coupled to the source node of the access transistor.
Abstract:
A nonvolatile memory cell is described, the memory cell comprising a semiconductor diode. The semiconductor material making up the diode is formed with significant defect density, and allows very low current flow at a typical read voltage. Application of a programming voltage permanently changes the nature of the semiconductor material, resulting in an improved diode. The programmed diode allows much higher current flow, in some embodiments one, two or three orders of magnitude higher, at the same read voltage. The difference in current allows a programmed memory cell to be distinguished from an unprogrammed memory cell. Fabrication techniques to generate an advantageous unprogrammed defect density are described. The memory cell of the present invention can be formed in a monolithic three dimensional memory array, having multiple stacked memory levels formed above a single substrate.
Abstract:
In a data reading circuit, an output signal from a sense amplifier which outputs a signal having a level corresponding to a potential difference between an input/output line pair is output through a first tri-state inverter and a second tri-state inverter. An NMOS transistor for precharging is provided between an output node of the first tri-state inverter and an output node (N3) of the sense amplifier. When the sense amplifier and the first tri-state inverter are inactivated, this transistor is also inactivated. As a result, an output node of the second tri-state inverter and an output node of the sense amplifier are connected with this transistor therebetween, so that the output node of the sense amplifier is precharged to an intermediate potential. According to the structure as described above, in the data reading circuit, a fast access is implemented, operation of the circuit is stabilized, and the lack of balance between the access times is suppressed.
Abstract:
A semiconductor device is described, incorporating electron traps at the interface between a semiconductor substrate and a gate dielectric layer of an insulated gate field effect transistor, such device being capable of retaining charge in the electron traps for a certain time, allowing volatile memory circuits to be produced wherein each cell occupies only the area required for a single transistor.
Abstract:
At least one electric pulse having a predetermined voltage which is higher than a switching voltage for a pnpn semiconductor device and a predetermined width is applied across the pnpn semiconductor device. The electric pulse width is set not to turn the pnpn semiconductor device on. Consequently, a predetermined amount of carriers are accumulated in the pnpn semiconductor device. In this circumstance, a trigger light is supplied to the pnpn semiconductor device to be turned on. As a result, an energy of the trigger light is largely decreased as compared to a conventional method.
Abstract:
A semiconductor memory device comprises a transistor and a resistor. The transistor has negative differential resistance characteristics in an emitter current or a source current thereof. Therefore the semiconductor memory device has few elements and a simplified configuration, and thus high speed operation and large scale integration can be realized. Further, in the semiconductor memory device of the present invention, several variations in design are possible.
Abstract:
An electrical data storage element which provides for alteration of this stored data by way of a data line and address lines. Data is held as a charge set on a charge storage device. The state of the switch elements is sensed by way of the data line and address line.