Abstract:
A system and method to reduce power consumption in a portable computer system while allowing the CDROM drive to continue playing audio CDs. When the system enters a suspend mode, the status of the CDROM drive is checked, and if it is playing an audio CD, it remains powered, otherwise power to the CDROM drive is also suspended. The system recognizes when the audio CD is finished playing and then places the CDROM drive into the suspend mode.
Abstract:
The present invention is an apparatus and method for providing power management apparatus for a circuit in a processor-based system. The apparatus comprises a memory to store instruction sequences by which the processor-based system is processed and a processor coupled to the memory. The stored instruction sequences cause the processor to: (a) determine a system access time of the circuit; (b) determine if the system access time is less than a first predetermined value, if so, increasing an accessibility period of the circuit, during which the circuit is active. Various embodiments are described.
Abstract:
An integrated circuit includes a CPU, a power management unit and plural functional units each dedicated to executing different functions. The power management unit controls the threshold voltage of the different functional units to optimize power/performance operation of the circuit and intelligent power management control responds to the instruction stream and decodes each instruction in turn. This information identifies which of the functional units are required for the particular instruction and by comparing that information to power status, the intelligent power control determines whether the functional units required to execute the command are at the optimum power level. If they are, the command is allowed to proceed, otherwise the intelligent power control either stalls the instruction sequence or modifies process speed.
Abstract:
A technique for invoking a low power operational mode in response to a halt instruction is used in a computer system that includes a processor coupled to external logic. The processor includes at least (i) a pipeline subcircuit to execute programmed instructions, including halt instructions, (ii) an interrupt handling subcircuit to handle interrupts generated by external interrupt logic, and (iii) clock generator circuitry that supplies clock signals to the pipeline and interrupt handling subcircuits. In response to execution of a halt instruction, the processor (i) enters the low power operational mode in which power consumption is reduced at least for the pipeline subcircuit, but without stopping the supply of clock signals to the interrupt handling subcircuit, and (ii) generates an acknowledgement signal to the external logic indicating that the clock signals to the pipeline subcircuit are being stopped, thereby entering the low power operational mode. In a preferred embodiment, the low power operational mode is entered by stopping the clock generator circuitry from supplying clock signals to the pipeline subcircuit, but not to the interrupt handling subcircuit. To resume normal processing, the interrupt handling subcircuit responds to an interrupt generated by the external logic by causing the clock generator circuitry to resume supplying clock signals to the pipeline subcircuit.
Abstract:
The present invention provides a method, apparatus, and system for dynamically changing the sizes of power-control pools that are used to control the power consumption levels of memory devices. In one embodiment, a request to change the sizes of the memory power-control pools is received. In response to receiving the request to change the sizes of the memory power-control pools, the memory devices are placed in a specific operating mode or power state after being refreshed in a periodic refresh cycle. In response to a signal indicating that all memory devices have been placed in the specific operating mode, powercontrol pools are resized according to pool size values corresponding to the request received.
Abstract:
An improved memory module and its use in a computer system is provided. The module includes a DSP first and second individually addressable banks of memory chips. The first bank is configured to function principally under the control of the signal processing element and the second bank is configured to function principally under the control of a system memory controller, although all the portions of each of the memory banks is addressable by both the signal processing element and the system memory controller. Both banks of memory chips can be placed in at least one higher power state and at least one lower power state by either the system memory controller or the DSP. The activity of each bank is sensed while in the higher power state, and the condition of each of the banks is sensed with respect to any activity during operation of the memory bank at the higher power state. The power state of each bank can be changed by either the signal processing element or the system memory controller responsive to preselected conditions of each bank. Each memory bank is returned to a predetermined known condition when changing from a lower power state to a higher power state. This is especially important when the memory bank assigned to the system controller is placed in another state by the DSP.
Abstract:
A sound controller comprises circuitry that performs a variety of sound functions. The circuitry is only powered when required by an application program. A power-saving driver receives a message issued from an operating system. When the message means indicates that a sound function is starting to be used, the power-saving driver turns on the power supply of a sound controller and then hands over the message to the sound device driver. In contrast, when the message indicates that the use of the sound function is ending, the power-saving driver first hands over the message to the sound driver, thereby causing the sound driver to execute an end process. After a predetermined time has elapsed since the power-saving driver handed over the message, it turns off the power supply of the sound controller.
Abstract:
A context controller for managing multitasking in a processor and a method of operating the same. In one embodiment, the context controller includes: (1) foreground and background task controllers that allocate processor resources to active contexts corresponding to foreground and background tasks, respectively, and (2) mode switching circuitry, coupled to the foreground and background task controllers, that places the processor in an idle state and a power saving mode when all of the contexts are inactive.
Abstract:
A circuit for, and method of, decreasing DC power dissipation in a logic gate and a processor incorporating the circuit or the method. In one embodiment, wherein the logic gate has at least two binary inputs adapted to receive corresponding input binary digits, the circuit includes: (1) a combinatorial logic power down circuit that develops a power down signal as a function of an input-data signal and at least one of the input binary digits and (2) a switch, coupled to the power down circuit, that interrupts DC current to at least a portion of the logic gate as a function of the power down signal.
Abstract:
Waking a computer from a system state. A wake data structure enables a device to wake the computer from a sleeping state. The lowest system state is identified that allows selected devices to still wake the system based on the contents of the wake data structure for the device. A chosen device power state is selected for each of the devices within the computer system and each device is placed within their respective chosen device power state. Wake devices have a particular chosen device power state that supports that wake device's capability of waking the computer system. Other devices are typically turned off. Finally, the operating system turns off any of power resources within the computer system that are no longer used by any of the devices.