Abstract:
An upright ESFR sprinkler includes a generally tubular body, at least one frame arm, a closure assembly, an unactuated heat responsive trigger assembly and a deflector assembly with a K-factor greater than 14, and preferably 16.8. The passageway extends between inlet and outlet openings. The closure is positioned proximate the outlet so as to occlude the passageway with a Bellville seal being. An ejection spring is coupled to the closure assembly. The heat responsive trigger assembly has a Response Time Index of 40 meter1/2second1/2 (m1/2sec1/2) or less. The deflector assembly includes a nosepiece and a plate like redirecting member. The plate like redirecting member faces the outlet and is coupled to the at least one frame arm and spaced from the outlet opening. The plate shaped member includes a first generally planar portion, a conical second portion, and a third portion extending from the conical second portion. The third portion includes a plurality of tines and a plurality of slots with at least one slot disposed between every two tines so that, when the heat responsive trigger assembly is actuated and the closure is positioned to allow a density of water to flow from the outlet of the body so as to suppress a fire of a particular commodity situated beneath the ceiling of 35 feet or less. System and methods relating to the upright sprinklers are also provided.
Abstract:
An early suppression fast response pendent-type fire protection sprinkler is suitable for use in accordance with one or more of NFPA 13, NFPA 231 and NFPA 231C to protect single row rack storage, double row rack storage and multiple row rack storage, the sprinkler having a K-factor of about 25 and flowing pressure of about 15 pounds per square inch. Preferably, the sprinkler has a body defining an orifice and an outlet for delivering a flow of fluid from a source, and a deflector mounted with a first surface opposed to flow of fluid from the outlet. The deflector defines at least one pair of generally opposed reentrant slots extending from the first surface through the deflector, the reentrant slots extending from slot openings at an outer peripheral edge of the deflector inwardly from the peripheral edge toward a deflector axis.
Abstract:
A memory system for an I/O controller which includes a memory with multiple memory blocks, a supply voltage control circuit providing power to each memory block, and control logic. Each memory block retains stored information with reduced power consumption when receiving a reduced voltage level. The control logic allocates buffers in the memory and controls the supply voltage control circuit to provide the full voltage level to at least one memory block of at least one allocated buffer and to provide the reduced voltage level to remaining memory blocks. Each memory block includes one or more buffers. In various embodiments the control logic fully powers each memory block of a buffer or less than all of the memory blocks. A linked buffer structure may be used to reduce the memory blocks of an allocated buffer receiving full power, such as only one memory block in the buffer.
Abstract:
An early suppression fast response pendent-type fire protection sprinkler is suitable for use in accordance with one or more of NFPA 13, NFPA 231 and NFPA 231C to protect single row rack storage, double row rack storage and multiple row rack storage, the sprinkler having a K-factor of about 25 and flowing pressure of about 15 pounds per square inch. Preferably, the sprinkler has a body defining an orifice and an outlet for delivering a flow of fluid from a source, and a deflector mounted with a first surface opposed to flow of fluid from the outlet. The deflector defines at least one pair of generally opposed reentrant slots extending from the first surface through the deflector, the reentrant slots extending from slot openings at an outer peripheral edge of the deflector inwardly from the peripheral edge toward a deflector axis.
Abstract:
A pendent-type fire protection sprinkler for forming a superimposed combination of an inner, downwardly-directed spray pattern and an outer, umbrella-shaped spray pattern. The pendent-type sprinkler has a body defining an orifice and outlet for flow of fluid from a source and a pair of frame arms extending from the body. The deflector includes a generally plate-like body member defining reentrant slots, which may include a second type of reentrant slots in addition to a first type of reentrant slots, with slots of the second type positioned symmetrically between adjacent slots of the first type. The length of slots of the second type, measured along the slot centerlines extending inwardly from a peripheral edge of the deflector body member generally toward the central axis of the deflector body, being less than the length of slots of the first type. The second type of reentrant slots provides an additional intermediate componentized spray pattern positioned radially between the inner, downwardly-directed spray pattern and the outer, umbrella-shaped spray pattern.
Abstract:
A fire protection nozzle has a base, an orifice, defined by the base and having a predetermined diameter, through which fire-retardant fluid can flow, a inlet section having an upstream end and defining a conduit for flow of the fire-retardant fluid along a conduit axis and leading to an upstream end of the orifice, a diffuser element positioned coaxially with and downstream of the orifice, and one or more arms extending from the base and supporting the diffuser element in a position, where, when flow of the fire-retardant fluid from the inlet section through the orifice is established, the fire-retardant fluid emerges from the orifice in a stream which impinges on a diffuser surface defined by the diffuser element to be distributed in a spray pattern. The diffuser surface defined by the diffuser element is generally spherical in shape in a region extending from an upstream end closest to the orifice to at least downstream of an equatorial plane of the diffuser element transverse to the conduit axis.
Abstract:
A communicator station wirelessly transmits frames to and receives frames from a least one additional communicator in a Group in accordance with a MAC protocol. One of the communicators functions as a hub and the remaining communicators function as remotes. The hub sends control information to the hubs to establish repeating communication cycles, each of which has intervals during which the hub and the remotes transmit and receive frames. The intervals allow the hub and the remotes to anticipate transmitting and receiving frames, thereby allowing the remotes to power off their receivers and transmitters to achieve a considerable savings in power consumption without degrading communications. Other improved features include adjusting the intervals and the durations of transmission opportunities in the communication cycle to obtain the beneficial aspects of TDMA and PRMA for LAN-like communication without also incurring most of the undesirable aspects of such MAC techniques. Other control functions such as arbitration determine which communicator is better suited to act as the hub.
Abstract:
Additional nodes beyond those permitted by the size of the address field of a standard network operating protocol, may be added to a directed token LAN, and the added nodes may be automatically and dynamically configured or reconfigured into a token passing loop. The added nodes, referred to as enhanced nodes, interoperably combine a standard reconfiguration sequence of a standard network operational protocol with an enhanced reconfiguration sequence of an enhanced protocol in order to send tokens to establish the next active nodes of the network and thereby establish the token passing loop through all of the standard and enhanced nodes.
Abstract:
A heat-responsive element has two links joined with a thin solder layer in a face-to-face relationship over an extended surface area. The components of opposed surfaces of the links in contact with the solder layer and the solder layer are adapted to alloy with each other in the regions immediately adjacent each opposed surface to form alloy bonds between the opposed surfaces and the solder layer. The strength of these bonds is greater than the strength of the solder layer. At least the opposed surfaces of the links consist, at least in part, of an alloy-forming amount of nickel, cobalt, chromium or iron, or an alloy of nickel, cobalt, chromium, or iron.
Abstract:
A multilevel communication structure controls input/output (I/O) data transfers and control functions in a computer system. Communication is achieved through shared memory structures in main memory commonly connected to each processor and each I/O adapter in the system. The levels of the communication structure are for communicating information between adapters or processors and processors, for communicating information relative to I/O control functions of an I/O device, and for specifying I/O functional operations. The information contained in the memory structures may be directly interpreted by sequencers of the I/O adapters, to achieve the I/O data transfers.