Abstract:
A chemical vapor deposition apparatus includes: a reaction chamber including an inner tube having a predetermined volume of an inner space, and an outer tube tightly sealing the inner tube; a wafer holder disposed within the inner tube and on which a plurality of wafers are stacked at predetermined intervals; and a gas supply unit including at least one gas line supplying an external reaction gas to the reaction chamber, and a plurality of spray nozzles communicating with the gas line to spray the reaction gas to the wafers, whereby semiconductor epitaxial thin films are grown on the surfaces of the wafers, wherein the semiconductor epitaxial thin film grown on the surface of the wafer includes a light emitting structure in which a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer are sequentially formed.
Abstract:
An air conditioner includes a control box assembly capable of efficiently utilizing a space inside a control box and easily performing inspection and repair of a circuit unit disposed in the control box. The air conditioner includes a case that constitutes an exterior and a control box assembly mounted in the case, wherein the control box assembly includes a control box in which an accommodation portion is formed, a sliding panel having one side on which a circuit unit is mounted and being accommodated in the accommodation portion so as to be taken out of the control box, and a rotation panel having one side on which the circuit unit is mounted and being rotatably mounted at one side of the control box.
Abstract:
A control information interpretation method of a terminal and a base station in a mobile communication system, and a terminal and a base station concerning the same, respectively, are provided. The control information interpretation method of a terminal includes receiving, by the terminal, control information including transport block information and antenna port related information; identifying whether a codeword 0 is enabled and a codeword 1 is disabled, or both the codeword 0 and the codeword 1 are enabled based on the transport block information; and interpreting the antenna port related information according to a result of the identification.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
A method and apparatus for mapping/demapping a resource efficiently in a wireless communication system are provided. A resource mapping method of a transmitter in a wireless communication system includes precoding pairs of symbols, arranging the pairs of precoded symbols adjacently in a resource block, and transmitting the pairs of precoded symbols in the resource block.
Abstract:
A method and apparatus for mapping/demapping a resource efficiently in a wireless communication system are provided. A resource mapping method of a transmitter in a wireless communication system includes precoding pairs of symbols, arranging the pairs of precoded symbols adjacently in a resource block, and transmitting the pairs of precoded symbols in the resource block.
Abstract:
A semiconductor light emitting device is provided including a first conductivity-type semiconductor layer, an active layer including at least one quantum barrier layer made of InxGa(1-x)N, wherein 0≦x
Abstract translation:提供了一种半导体发光器件,其包括第一导电型半导体层,包括由In x Ga(1-x)N制成的至少一个量子势垒层的有源层,其中0< 1E; x
Abstract:
Light emitting devices. A light emitting device including a power source; and a plurality of light emitting diode (LED) arrays coupled to the power source unit; and at least one delay unit. Each delay unit is coupled to a corresponding light emitting diode array of the light emitting diode arrays.
Abstract:
Provided a method of manufacturing a semiconductor light emitting device, the method includes forming a light emitting structure by growing a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer on a substrate. The forming of the light emitting structure includes: forming a protective layer after a portion of the light emitting structure is formed forming a sacrificial layer on the protective layer; and continuously forming a further portion of the light emitting structure on the sacrificial layer.