Abstract:
A method and system for resource allocation is provided. A method includes identifying a set of resource blocks associated with a control channel for a terminal; transmitting, to the terminal, information on the set of resource blocks on a radio resource control signal, the information including first information indicating resource blocks included in the set of resource blocks and second information indicating a number of symbols corresponding to the set of resource blocks; transmitting, to the terminal, control information including information for downlink data on the control channel identified based on the first information and the second information; and transmitting, to the terminal, the downlink data on a data channel based on the control information. The set of resource blocks includes at least one control channel resource. A search space for the control channel of the terminal is defined based on an aggregation level, a number of the at least one control channel resource, and a number of a candidate associated with the control channel.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
A control information interpretation method of a terminal and a base station in a mobile communication system, and a terminal and a base station concerning the same, respectively, are provided. The control information interpretation method of a terminal includes receiving, by the terminal, control information including transport block information and antenna port related information; identifying whether a codeword 0 is enabled and a codeword 1 is disabled, or both the codeword 0 and the codeword 1 are enabled based on the transport block information; and interpreting the antenna port related information according to a result of the identification.
Abstract:
A User Equipment (UE) in a wireless communication system using a Coordinated Multi-Point transmission/reception (CoMP) scheme receives Downlink Control Information (DCI) including CoMP control information, determines a starting position of a data channel on wireless resources, based on starting position information of a data channel included in the CoMP control information and used in each of a plurality of cells, and receives data from the plurality of cells starting from the determined starting position.
Abstract:
A method and system for resource allocation is provided. A method includes identifying bit map information on a set of resource blocks associated with a control channel for a UE, through radio resource control (RRC) signaling from a base station; receiving, from the base station, control information for downlink data on the control channel identified based on the bit map information; and receiving, from the base station, the downlink data on a data channel based on the control information. The control information is received on at least one control channel resource, which is included in the set of resource blocks. A search space for the control channel of the UE is defined based on an aggregation level, a number of the at least one control channel resource included in the set of resource blocks, and a number of a candidate associated with the control channel.
Abstract:
A method and an apparatus are provided for transmitting and receiving control information in wireless communication system. An eNB generates control information, and transmits the control information using at least one enhanced Control Channel Element (eCCE) and at least one antenna port. The at least one antenna port is determined according to at least one of a starting index of the at least one eCCE and an aggregation level of the at least one eCCE.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
A control information interpretation method of a terminal and a base station in a mobile communication system, and a terminal and a base station concerning the same, respectively, are provided. The control information interpretation method of a terminal includes receiving, by the terminal, control information including transport block information and antenna port related information; identifying whether a codeword 0 is enabled and a codeword 1 is disabled, or both the codeword 0 and the codeword 1 are enabled based on the transport block information; and interpreting the antenna port related information according to a result of the identification.
Abstract:
In legacy systems such as 3rd Generation Partnership Project (3GPP) releases 8 to 10, the control channel is transmitted using the first few Orthogonal Frequency Division Multiplexing (OFDM) symbols in a subframe. The limited control channel capacity will impact the system performance in future releases as more and more User Equipments (UEs) will be scheduled in a subframe with technologies such as MulitUser-Multiple Input Multiple Output (MU-MIMO) and Coordinated Multipoint (CoMP) transmission being enhanced or introduced. A new Enhanced Control CHannel (E-CCH) is necessary to be designed, which will use the resource in the Physical Downlink Shared CHannel (PDSCH) in the legacy systems. The E-CCH will support UE-specific DeModulation Reference Signal (DMRS) based transmission and receiving. However, the configuration of DMRS for E-CCH is necessary to be known to UE in prior. This invention discloses multiple methods in which DMRS is configured for E-CCHs and respective eNB and UE behaviors.