Abstract:
A radio terminal (12) transmits, to a radio access network (RAN) node (11) in a radio access network (RAN), an indication indicating whether a measurement gap for inter-bandwidth part (BWP) measurement among BWPs included in a plurality of downlink BWPs is required. The downlink BWPs are included within one system bandwidth. Further, the radio terminal (12) receives, from the RAN node (11), a measurement configuration including a measurement gap configuration for one or more BWPs included in the downlink BWPs. It is thus, for example, possible to allow a radio terminal to be configured with a proper measurement gap for inter-BWP measurement within one carrier bandwidth.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may identify, when using carrier aggregation and a plurality of component carrier groups, first traffic associated with a first service type and second traffic associated with a second service type for concurrent transmission. The user equipment may transmit, concurrently, the first traffic associated with the first service type using a first component carrier group of the plurality of component carrier groups, and the second traffic associated with the second service type using a second component carrier group of the plurality of component carrier groups. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure provide techniques for techniques for providing sidelink feedback. Certain aspects provide a method for wireless communication by a first user equipment (UE). The method generally includes receiving, from a second UE, one or more sidelink data messages and transmitting, to the second UE, via a first sidelink feedback channel resource, a first feedback message comprising one or more feedback bits associated with the one or more sidelink data messages, wherein: the first sidelink feedback channel resource comprises a first partial interlace group of a first interlace group of resource blocks, and the first partial interlace group comprises at least two first resource blocks.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
Certain aspects of the present disclosure provide techniques for implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources. In an aspect, the UE may be instructed to report on specific CSI-RS resource(s) via explicit signaling in the UE grant. Other aspects disclose techniques for implicit CSI-RS resource selection by the UE that require fewer signaling resources. Instead of explicitly signaling CSI-RS resources to the UE, the UE may implicitly select CSI-RS resource for CSI feedback reporting based on information known to the UE, e.g. a subframe on which a reporting request is received. This may reduce the impact of the additional signaling in the UE grant.
Abstract:
A communications system comprises a second device (28) and a first device (30). The first device (30) is of a type which receives, on a downlink over a radio interface from a second device, precoded information (29). In an example mode the first device 28 generates a multi-part feedback signal (22) which is configured to affect content of a precoder matrix (40) utilized by the second device (28). On an uplink over the radio interface to the second device, at least two different parts of the multi-part feedback signal are transmitted with two respective different transmission granularities in time and/or frequency.
Abstract:
A method and apparatus for processing feedback implemented in a wireless transmit/receive unit (WTRU) comprises estimating a channel matrix. The effective channel is calculated and a precoding matrix is selected. Feedback bits are generated and transmitted.
Abstract:
A prioritization is determined amongst a group of receivers for receiving signals transmitted from the wireless transmitter, without use of accurate channel state information. A signal is transmitted to each receiver based on an order that is determined by the prioritization. The transmitted signal can be encoded so that the receiver is able to receive the signal regardless of a channel state as between that receiver and the wireless transmitter.
Abstract:
A method of transmission over multiple wireless channels in a multiple antenna system includes storing channel modulation matrices at a transmitter; receiving quantized channel state information at the transmitter from plural receivers; selecting a transmission modulation matrix using the quantized channel state information from the stored channel modulation matrices; and transmitting over the multiple channels to the plural receivers using the selected transmission modulation matrix. In another embodiment, the method includes storing, at one or more receivers, indexes of modulation matrices generated by a capacity enhancing algorithm; upon a selected one of the one or more receivers receiving a transmission from the transmitter, the selected receiver selecting a modulation matrix from the stored modulation matrices that optimizes transmission between the transmitter and the selected receiver, the selected receiver sending an index representing the selected modulation matrix; and receiving the index at the transmitter from the selected receiver.
Abstract:
A method for transmitting a Channel State Information-Reference Signal (CSI-RS) in an Orthogonal Frequency Division Multiple Access (OFDMA) system, the method comprising of determining a CSI-RS pattern type based on a Physical Resource Block (PRB) index of a subframe, assigning, when the subframe is supposed to carry the CSI-RS, CSI-RSs of first to Nth antenna ports to first to Nth Orthogonal Frequency Division Multiplexing (OFDM) symbols of a PRB based on the CSI-RS pattern type, and transmitting the subframe including the PRB in which CSI-RSs of the first to Nth antennas a mapped, wherein the first to Nth CSI-RS pattern types map CSI-RSs of the first to Nth antenna ports to the first to Nth OFDM symbols of the PRB in an alternate manner.