Abstract:
A monitoring system is disclosed for in vivo monitoring of preselected physiological parameters associated with acute and/or chronic tissue compromise or failure in one or multiple tissue/organ sites in real time. In one method, a body portion of a surgical stapling device is positioned adjacent a first tissue section, an anvil assembly adapted to engage the body portion is positioned adjacent a second tissue section, and a monitoring device is positioned adjacent the first and/or second tissue sections. The monitoring device includes a sensor adapted to measure a preselected physiological parameter and a transmitter for transmitting signal to an extracorporeal receiving unit. The surgical stapling device is fired to mechanically secure the first and second tissue sections with at least one staple and the preselected physiological parameter is monitored via the information transmitted from the monitoring device to the receiving unit.
Abstract:
The present invention discloses a full reservoir sampling and testing apparatus having a ground surface testing and controlling tool (36) and a downhole tool (1), the downhole tool (1) comprises a wireline bridle (21), an adapter joint AH64 (2) connected to the wireline bridle (21), a GR pup joint, an electric unit (4), a single probe unit (5), a pumping unit (6), a dual packer unit (7), and a multi sampling unit (8); the ground surface testing and controlling tool (36) comprises a power supply controller, a computer system and a relevant control, analysis and interpretation software; an upper portion of the pumping unit (6) is connected to the single probe unit (5) and a lower portion thereof is connected to the multi sampling unit (8).
Abstract:
A system and method for transferring power includes a power transmitting unit for transmitting power and a power receiving unit for receiving power from the power transmitting unit. The power transmitting unit may be positioned outside a human body and the power receiving unit is located on an intrabody instrument adapted to be movable from the outside of the human body to inside the human body. The intrabody instrument may be a medical instrument connected to or incorporated within a robotic arm. The power transmitting unit may wirelessly transfer power to the power receiving unit in a continuous, non-interrupted manner.
Abstract:
The present disclosure provides for a surgical instrument. The surgical instrument includes a handle portion and a body portion extending distally from the handle portion and defining a first longitudinal axis. The surgical instrument includes an articulating tool assembly defining a second longitudinal axis and having a proximal end. The articulating tool assembly is disposed at a distal end of the body portion and is configured to be articulated with respect to the body portion, namely, the articulating tool assembly is movable from a first position in which the second longitudinal axis is substantially aligned with the first longitudinal axis to at least a second position in which the second longitudinal axis is disposed at an angle with respect to the first longitudinal axis. The surgical instrument also includes an articulation mechanism configured to articulate the articulating tool assembly.
Abstract:
A method for fabricating a laser diode comprising providing a laser diode epitaxial structure and depositing a metal layer stack on the epitaxial structure, the stack comprising a contact and sacrificial layer. A ridge is formed in the laser diode epitaxial structure, the stack being the mask forming the ridge. An insulating layer is deposited over the ridge and at least a portion of the sacrificial layer is removed. At least a portion of the insulating thin film at the top of the stack is also removed. A pad metal is deposited in electrical contact with the contact and is insulated from the ridge and laser diode epitaxial structures by the insulating layer.
Abstract:
To integrate a parent application and a child application, the parent application receives events through a user interface. If the events are to be processed by the child application, they are propagated to the child application. The child application generates content data based on the received events, writes the content data into a storage module, and then notifies the parent application. The parent application reads out the content data written in the storage module.
Abstract:
A wavelength tunable laser comprising a laser diode and a closed external cavity formed by one or more optical resonators either horizontally or vertically coupled to adjacent waveguides. The optical resonator primarily functions as a wavelength selector and may be in the form of disk, ring or other closed cavity geometries. The emission from one end of the laser diode is coupled into the first waveguide using optical lens or butt-joint method and transferred to the second waveguide through evanescent coupling between the waveguides and optical resonator. A mirror system or high reflection coating at the end of the second waveguide reflects the light backwards into the system resulting in a closed optical cavity. Lasing can be achieved when the optical gain overcomes the optical loss in this closed cavity for a certain resonance wavelength which is tunable by changing the resonance condition of the optical resonator through reversed biased voltage or current injection. Multiple optical resonators may be used to reduce the lasing threshold and provide higher power output. With monolithic integration, more optical devices can be integrated with the tunable laser into the same substrate to produce optical devices that are capable of more complex functions, such as tunable transmitters or waveguide buses.
Abstract:
A method for preparing low-cost clean steel includes steps of: preliminarily desulfurizing iron melt: preliminarily desulfurizing in an iron melt channel during blast furnace tapping and during iron folding in an iron folding room, adding a desulfurizing ball into the iron melt during the blast furnace tapping or the iron folding; dephosphorizing and controlling sulfur: dephosphorizing and controlling sulfur during converter steelmaking, in such a manner that P≦0.014% and S≦0.004% during tapping; rapidly dephosphorizing by slag-forming: rapidly dephosphorizing by slag-forming during converter tapping, at a converter end point, controlling a C content at 0.02˜0.10%, adding a dephosphorizing ball through an alloy chute during the converter tapping, blowing argon and stirring at the same time; purifying steel melt during RH refining: adding a purifying ball at a late stage of the RH refining when a vacuum degree is at 66.7˜500 Pa; and continuously casting with whole-process protection.
Abstract:
A monitoring system is disclosed for in vivo monitoring of preselected physiological parameters associated with acute and/or chronic tissue compromise or failure in one or multiple tissue/organ sites in real time. In one method, a body portion of a surgical stapling device is positioned adjacent a first tissue section, an anvil assembly adapted to engage the body portion is positioned adjacent a second tissue section, and a monitoring device is positioned adjacent the first and/or second tissue sections. The monitoring device includes a sensor adapted to measure a preselected physiological parameter and a transmitter for transmitting signal to an extracorporeal receiving unit. The surgical stapling device is fired to mechanically secure the first and second tissue sections with at least one staple and the preselected physiological parameter is monitored via the information transmitted from the monitoring device to the receiving unit.
Abstract:
A wireless laparoscopic camera system includes a housing having proximal and distal ends and a lens disposed at the distal end thereof. A chip package is disposed within the housing. The chip package is positioned proximally of the lens and includes an image sensor, a processing component, and a wireless transmitter. The image sensor, the processing component, and the wireless transmitter are configured as bare die and are stacked and coupled in sequence with respect to one another to form the chip package. The chip package is configured to convert an optical image produced by the lens into an electrical signal. The signal is transmitted wirelessly to a wireless receiver positioned remote of the housing.