Abstract:
A process and system having a primary crusher to reduce the fragments according to their granulometry; a magnetic separator to remove metallic fragments bigger than a determined granulometry; a rotary dryer to dry slag; an impact mill to disaggregate and fragment slag particles; a classifier for aero-classification and drag of fine and superfine particles; a cooler for cooling slag by means of heat exchange and removal of the fine and superfine particles that were not collected by the impact mill a vibrating sieve provided with two or more decks with screens of predetermined sizes; low-intensity magnetic separators, with generation of non-magnetic slag fractions free from metallic iron and from iron monoxide, and of magnetic fractions composed by metallic iron and iron monoxide; and low-intensity magnetic separators to reprocess the magnetic fractions with generation of concentrate with high metallic iron contents and a product with high concentration of iron monoxide.
Abstract:
The present invention relates to a process and to a system for eliminating the expandability of steel-plant slag, which comprises a primary crusher (3) to reduce the fragments according to their granulometry; a magnetic separator (4) to remove metallic fragments bigger than a determined granulometry (5); a rotary dryer (6) to dry slag free from bigger metallic fragments; an impact mill (11) to disaggregate and fragment slag particles that are bigger than a predetermined granulometry; a classifier (12) for aero-classification and drag of fine and superfine particles; a cooler (17) for cooling slag particles bigger than a predetermined granulometry by means of heat exchange and removal of the fine and superfine particles that were not collected by the impact mill (11); a vibrating sieve (21) provided with two or more decks (23, 24, and 25) with screens of predetermined sizes; low-intensity magnetic separators (26, 27 and 28), with generation of non-magnetic slag fractions free from metallic iron and from iron monoxide, and of magnetic fractions composed by metallic iron and iron monoxide; and low-intensity magnetic separators (35, 36 and 37) to reprocess the magnetic fractions with generation of concentrate with high metallic iron contents and a product with high concentration of iron monoxide.
Abstract:
The invention is directed to a process for dehydrating and recycling back into a BOF converter wet BOF scrubber sludge to produce a steelmaking revert having an improved flow rate when handled in a recycle stream. Wet sludge is combined with hot BOF slag to provide a slag/sludge mixture. The wet sludge causes the mixture to have a moisture content greater than 10% water by weight, and the hot slag, having a temperature below the molten liquid state, vaporizes the water in the mixture and reduces the moisture content to about 4% water by weight or less. The dehydrated mixture has improved flow rate properties when it is recycled as a steelmaking revert.
Abstract:
A method for processing solid waste incineration residues is disclosed in which the residues are introduced a steelworks slag bath in a sufficient amount so that the residues constitute from 15-45% by weight of the combined weight of the solid waste incineration residues and the steelworks slag bath. The residues are melted to effect the evaporation of heavy metals; which are drawn off from the steelworks slag bath to leave a heavy-metal-depleted slag bath. The residual bath is reduced with carbon carriers to form a slag phase and a pig iron phase. The slag phase can be granulated to produce mixed cement components.
Abstract:
Soundproofed conduit to discharge fumes, advantageously associated with assemblies to discharge fumes for melting systems in steel production plants, the conduit being located between the ventilation system (14) and an outlet chimney (13), at least the first segment (19a) of the discharge conduit defining a section with a value (A) through which the fumes transit, the conduit (12) defining a path, from the relative ventilation system (14) to the discharge chimney (13), comprising at least two counter-opposed and controlled changes in direction (15a, 15b) defining at least respective consecutive segments (19a, 19b, 19c) arranged one at an angle to another, the changes in direction being functionally configured so as to cause phase and counter-phase effects of the sound waves generated by the fluid in transit, the phase and counter-phase effects having the purpose of at least deadening partly the sound waves caused by the passage of the fluid.
Abstract:
Described herein is an Improved Converter System designed to help reduce air, land and water pollution by completely converting materials that presently cause pollution into clean burning fuels and a host of other products beneficial to mankind. The primary conversion unit in the system is a zone controlled multipurpose slagging-ash oxygen jet blast converter. All incoming materials are passed through this process computer aided talented offspring of its two ancient prototypes the blast furnace and slagging-ash gas producers and the zone controlled blast furnaces described in U.S. Pat. Nos. 4,381,938, 4,495,054, 3,928,023 and 3,814,404. It employs two sets of tuyeres located in the bosh to input endothermic reacting gases, vapors and dusts through tuyere sets T1 and T2. A 100% oxygen jet blast is also input through tuyere set T2. Three sets of tuyeres in the stack are used to output finished products and by-products, T3, T4 and T5, zone control the stack temperature profile and remove recycling in the stack materials.Incoming solid raw materials are charged in at the top and molten slag and metal are removed from near the bottom as in conventional blast furnace practice. As the burden descends it is completely converted by the precisely controlled as to temperature volume, and composition up moving gas stream. It is originated by combusting in the bosh a more central than conventional portion of the carbonaceous grate with the oxygen jet blast entering through tuyere set T2. It furnishes the heat required to completely convert the downmoving burden to a gas, vapor, molten slag, molten metal or dust. The portion of the gas withdrawn through tuyere set T3 just above the mantel in two modes of operation is an ideal boiler fuel or reducing gas as withdrawn. When it is combusted it produces only water, carbon dioxide and nitrogen, no harmful gases or chemical residues. All other by-products withdrawn or raw materials consumed in other units in the improved converter system producing finished products needed by mankind. Burning in the bosh a more central than conventional portion of the carbonaceous grate with the oxygen jet blast entering through tuyere set T2. It furnishes the heat required to completely convert the down moving burden to a gas, vapor, molten slag, molten metal or dust. The portion of the gas withdrawn through tuyere set T3 located in the stack just above the bosh is an ideal boiler fuel or reducing gas as withdrawn. When it is combusted it produces only water, carbon dioxide and nitrogen, no harmful gases or chemical residues.
Abstract:
A burner/injector for providing a localized impingement flame or multiple flames for scrap heating and melting through use of a fluid fuel and at least one oxygen rich oxidizing gas. The burner/injector includes a liquid-cooled combustor for generating an impinging flame directed toward a scrap pile and a structure for injecting a controllable amount of a solid carbonaceous fuel and a controllable flow of high velocity oxidizing gas into space that has been previously occupied by the impinging flame. The burner/injector may be equipped to inject a solid slag forming materials and/or slag deoxidizing materials and/or to inject an additional oxidizing gas for burning a small portion of preheated scrap, post-combustion of CO and iron-carbon melt refining. The burner/injector may be arranged as a simple liquid-cooled combustor permanently mounted through the furnace wall or roof, and may be equipped with single or multiple channels for injection of solid material and high velocity oxidizing gas. Separate injecting lances for high velocity oxidizing gas and/or solid carbonaceous fuel may be mounted on the furnace. Both the lances and the combustors may be equipped with a nozzles for additional injection of the additional oxidizing gas.
Abstract:
A process of continuous metal refinement comprising feeding molten metal to a reaction chamber, introducing gaseous and solid oxidants, adding bulk materials, fully converting the metal and slag into a foamy emulsion, creating, in the reaction chamber, an increased pulsating pressure and a considerable deviation of a system from thermodynamic equilibrium by way of creating a self-organizing system of chemical reaction with gas evolution and taking off the emulsion into a refining sump at the critical speed of egress of two-phase liquid, separating the metal and slag in said refining sump and withdrawing the gas through a high layer of emulsion at a definite rate. A unit for continuously refining metal, comprising a spherical reaction chamber (1) with a channel (5) for supplying molten metal and a channel (4) for feeding bulk materials, with a device for feeding a gaseous oxygen made in the form of oppositely arranged lances, a cylindrical connection channel (2), a refining sump (3) with tap holes (20, 15) for withdrawing metal and slag, respectively, the slag tap hole is divided into two vertical channels (16, 17) for separating slag and gas, respectively, a channel (13) for the delivery of slag-forming materials, and lances (11, 12) for feeding oxygen.
Abstract:
The invention relates to a furnace (1) for melting metal-bearing substances and/or production of liquid metal (4) of the type in which said metal (4) has above it a layer of slag (5) liable to be affected by a "foaming" phenomenon, in which a side wall of said furnace comprises an orifice (17) opening into an adjacent tank (22) capped with a vault (25), said tank (22) being capable of collecting a proportion of said slag (5) by overflowing through said orifice (17) when said foaming phenomenon takes on proportions that risk causing damage to said furnace (1).The invention also relates to a process for the production of liquid metal employing such a furnace.
Abstract:
In a method of producing metal melts, in particular a steel melt from scrap, in an electric arc furnace having at least one graphite electrode, organic substances are charged into the electric arc through a central longitudinal recess of the graphite electrode so as to reduce electrode consumption.