Abstract:
A method of executing a downshift in a fixed-gear powertrain having an input node and an output node related by a starting speed ratio before the downshift and a finishing speed ratio after is provided. The downshift includes a torque phase and an inertia phase. A starting output torque is calculated as a function of a starting driver request. An electric machine applies a starting regenerative input torque which is calculated as substantially equal to the starting output torque divided by the starting speed ratio. A finishing output torque is calculated as a function of a finishing driver request. The electric machine applies a finishing regenerative input torque which is calculated as substantially equal to the finishing output torque divided by the finishing speed ratio.
Abstract:
A control system for an automatic transmission coupled to an engine by a torque converter includes a torque module and a first clutch control module. The torque module determines an input torque to the transmission based on an output torque of the engine. The first clutch control module adjusts an acceleration of a turbine of the torque converter during a down shift of the transmission based on the input torque. The first clutch control module adjusts the acceleration of the turbine by adjusting a first pressure of fluid supplied to an off-going clutch of the transmission based on the input torque. The first clutch control module adjusts the first pressure based on a mathematical model that relates a torque capacity of the off-going clutch, the input torque, and the acceleration. A method is also provided.
Abstract:
A control system includes a shift stage determination module and a clutch control module. The shift stage determination module determines a duration of a first power-on downshift when a second power-on downshift is requested, where a power-on downshift is a downshift of a transmission that occurs when an accelerator pedal is depressed. The clutch control module completes the first power-on downshift and selectively starts controlling the second power-on downshift before the first power-on downshift ends.
Abstract:
A system for a vehicle includes a desired pressure module, a valve actuation module, a filter module, and a capacity detection module. The desired pressure module selectively generates an increase in a desired pressure of hydraulic fluid for a clutch of an automatic transmission. The valve actuation module actuates a solenoid valve based on the desired pressure. The solenoid valve supplies hydraulic fluid to a regulator valve, and the regulator valve supplies hydraulic fluid to the clutch. The filter module filters an acceleration of a shaft of the automatic transmission to generate a filtered acceleration. The capacity detection module indicates whether the clutch reached torque carrying capacity based on the filtered acceleration.
Abstract:
A clutch control system for a vehicle includes a shift command module and an offgoing clutch control module. The shift command module commands an upshift of a clutch-to-clutch transmission when an engine torque is less than a predetermined negative torque. The offgoing clutch control module increases an offgoing clutch pressure above a predetermined apply pressure in response to the command. An offgoing clutch is fully engaged when the offgoing clutch pressure is greater than the predetermined apply pressure.
Abstract:
A control system for a transmission includes a pressure control module and a pressure adapt module. The pressure control module operates a hydraulic control system of the transmission at a target pressure during steady-state operation of the transmission. The target pressure is based on first and second learned pressures for different predetermined first and second torque ranges. The pressure adapt module selectively adjusts at least one of the first learned pressure and the second learned pressure based on a first pressure at which a slip condition of the transmission occurs. The first and second learned pressures define a learned pressure gain and offset. When adjusting the first and second learned pressures, the pressure adapt module limits increases and decreases in the learned pressure gain offset based on a predetermined pressure gain and offset. A method is also provided.
Abstract:
A method of controlling a transmission includes estimating an expected coefficient of friction of the clutch, estimating a value of an expected torque required to maintain a constant slip of the clutch for a current input torque applied to the transmission, and determining a value of an actual torque applied to the clutch to maintain the constant slip of the clutch at the current input torque. An actual coefficient of friction of the clutch is calculated by dividing the actual torque applied to the clutch by the expected torque applied to the clutch, and multiplying that quotient by the expected coefficient of friction of the clutch. A feed forward torque command is then adjusted based upon the actual coefficient of friction of the clutch to define a revised value of the feed forward torque command, which may then be used to control the clutch for various control operations.
Abstract:
A method of controlling a transmission includes estimating an expected coefficient of friction of the clutch, estimating a value of an expected torque required to maintain a constant slip of the clutch for a current input torque applied to the transmission, and determining a value of an actual torque applied to the clutch to maintain the constant slip of the clutch at the current input torque. An actual coefficient of friction of the clutch is calculated by dividing the actual torque applied to the clutch by the expected torque applied to the clutch, and multiplying that quotient by the expected coefficient of friction of the clutch. A feed forward torque command is then adjusted based upon the actual coefficient of friction of the clutch to define a revised value of the feed forward torque command, which may then be used to control the clutch for various control operations.
Abstract:
A control system for a transmission includes a memory module, a position module, an error module, an integral module, and an adjustment module. The memory stores a control value as a function of clutch torque. The position module controls a position of a clutch based on the control value. The error module periodically determines a slip speed error based on a difference between a target slip speed and an estimated slip speed of the clutch. The integral module periodically determines an integral of the slip speed error. The adjustment module adjusts the control value based on the integral. A method for controlling a transmission is also provided.
Abstract:
A control system includes a shift stage determination module and a clutch control module. The shift stage determination module determines a duration of a first power-on downshift when a second power-on downshift is requested, where a power-on downshift is a downshift of a transmission that occurs when an accelerator pedal is depressed. The clutch control module completes the first power-on downshift and selectively starts controlling the second power-on downshift before the first power-on downshift ends.