Abstract:
A system and method is provided of determining geographic positions. In one aspect, a user points the device at first and second positions on the surface of a geographic object. Based on the position of the device, the orientation of the device, and information identifying the geographic position of the surface of the object, a processor determines and displays the distance between the first and second positions.
Abstract:
Methods and systems for generating video from panoramic images using transition trees are provided. According to an embodiment, a method for generating a video from panoramic images may include receiving a transition tree corresponding to a current panoramic image from a server. The method may also include determining a path of the transition tree to a next panoramic image based on a user navigation request. The method may further include requesting and receiving a video chunk from the server for each edge of the determined path of the transition tree. The method may also include displaying the requested video chunks in sequence according to the transition tree. According to another embodiment, a system for generating a video from panoramic images may include a transition tree module and a video display module.
Abstract:
A vehicle configured to operate in an autonomous mode may engage in an obstacle evaluation technique that includes employing a sensor system to collect data relating to a plurality of obstacles, identifying from the plurality of obstacles an obstacle pair including a first obstacle and a second obstacle, engaging in an evaluation process by comparing the data collected for the first obstacle to the data collected for the second obstacle, and in response to engaging in the evaluation process, making a determination of whether the first obstacle and the second obstacle are two separate obstacles.
Abstract:
A system and method is provided of determining geographic positions. In one aspect, a user points the device at first and second positions on the surface of a geographic object. Based on the position of the device, the orientation of the device, and information identifying the geographic position of the surface of the object, a processor determines and displays the distance between the first and second positions.
Abstract:
Systems and methods for filling panoramic images having valid and invalid pixel regions are provided. An invalid region is identified in an initial panoramic image. Pixel data of invalid pixels in the initial panoramic image are replaced with pixel data of pixels from a valid region in at least one nearby panoramic image to obtain a valid fill region.
Abstract:
Aspects of the present disclosure relate generally to safe and effective use of autonomous vehicles. More specifically, an autonomous vehicle is able to detect objects in its surroundings which are within the sensor fields. In response to detecting objects, the computer may adjust the autonomous vehicle's speed or change direction. In some examples, however, the sensor fields may be changed or become less reliable based on objects or other features in the vehicle's surroundings. As a result, the vehicle's computer may calculate the size and shape of the area of sensor diminution and a new sensor field based on this area of diminution. In response to identifying the area of sensor diminution or the new sensor field, the vehicle's computer may change the control strategies of the vehicle.
Abstract:
The present invention relates to using image content to facilitate navigation in panoramic image data. In an embodiment, a computer-implemented method for navigating in panoramic image data includes: (1) determining an intersection of a ray and a virtual model, wherein the ray extends from a camera viewport of an image and the virtual model comprises a plurality of facade planes; (2) retrieving a panoramic image; (3) orienting the panoramic image to the intersection; and (4) displaying the oriented panoramic image.
Abstract:
Aspects of the invention pertain to enhanced zooming capability of user devices. A user device such as a mobile phone with a camera may capture images of different objects of interest. The capture and zooming limitations of the user device are overcome by replacing, supplementing or otherwise enhancing the image taken with one or more geo-coded images stored in a database. For instance, if the user attempts to zoom in on a feature of an object of interest and exceeds the zooming capability of the user device, a request is sent to a remote server to provide an image showing the feature of the object of interest at a desired resolution. The server determines which, if any, stored images correlate to the captured image of the object of interest. The resulting imagery is provided to the user device and is presented on a display.
Abstract:
A system and method of displaying transitions between street level images is provided. In one aspect, the system and method creates a plurality of polygons that are both textured with images from a 2D street level image and associated with 3D positions, where the 3D positions correspond with the 3D positions of the objects contained in the image. These polygons, in turn, are rendered from different perspectives to convey the appearance of moving among the objects contained in the original image.
Abstract:
Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.